42525c0d45ef1ae61737b1fa55229f2fbb85b3e6.svn-base 18.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
/*
 * $Id: rawinflate.js,v 0.2 2009/03/01 18:32:24 dankogai Exp $
 *
 * original:
 * http://www.onicos.com/staff/iz/amuse/javascript/expert/inflate.txt
 */

/* Copyright (C) 1999 Masanao Izumo <iz@onicos.co.jp>
 * Version: 1.0.0.1
 * LastModified: Dec 25 1999
 */

/* Interface:
 * data = inflate(src);
 */

(function () {
	/* constant parameters */
	var WSIZE = 32768, // Sliding Window size
		STORED_BLOCK = 0,
		STATIC_TREES = 1,
		DYN_TREES = 2,

	/* for inflate */
		lbits = 9, // bits in base literal/length lookup table
		dbits = 6, // bits in base distance lookup table

	/* variables (inflate) */
		slide,
		wp, // current position in slide
		fixed_tl = null, // inflate static
		fixed_td, // inflate static
		fixed_bl, // inflate static
		fixed_bd, // inflate static
		bit_buf, // bit buffer
		bit_len, // bits in bit buffer
		method,
		eof,
		copy_leng,
		copy_dist,
		tl, // literal length decoder table
		td, // literal distance decoder table
		bl, // number of bits decoded by tl
		bd, // number of bits decoded by td

		inflate_data,
		inflate_pos,


/* constant tables (inflate) */
		MASK_BITS = [
			0x0000,
			0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
			0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
		],
		// Tables for deflate from PKZIP's appnote.txt.
		// Copy lengths for literal codes 257..285
		cplens = [
			3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
			35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0
		],
/* note: see note #13 above about the 258 in this list. */
		// Extra bits for literal codes 257..285
		cplext = [
			0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
			3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99 // 99==invalid
		],
		// Copy offsets for distance codes 0..29
		cpdist = [
			1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
			257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
			8193, 12289, 16385, 24577
		],
		// Extra bits for distance codes
		cpdext = [
			0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
			7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
			12, 12, 13, 13
		],
		// Order of the bit length code lengths
		border = [
			16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
		];
	/* objects (inflate) */

	function HuftList() {
		this.next = null;
		this.list = null;
	}

	function HuftNode() {
		this.e = 0; // number of extra bits or operation
		this.b = 0; // number of bits in this code or subcode

		// union
		this.n = 0; // literal, length base, or distance base
		this.t = null; // (HuftNode) pointer to next level of table
	}

	/*
	 * @param b-  code lengths in bits (all assumed <= BMAX)
	 * @param n- number of codes (assumed <= N_MAX)
	 * @param s- number of simple-valued codes (0..s-1)
	 * @param d- list of base values for non-simple codes
	 * @param e- list of extra bits for non-simple codes
	 * @param mm- maximum lookup bits
	 */
	function HuftBuild(b, n, s, d, e, mm) {
		this.BMAX = 16; // maximum bit length of any code
		this.N_MAX = 288; // maximum number of codes in any set
		this.status = 0; // 0: success, 1: incomplete table, 2: bad input
		this.root = null; // (HuftList) starting table
		this.m = 0; // maximum lookup bits, returns actual

	/* Given a list of code lengths and a maximum table size, make a set of
	   tables to decode that set of codes. Return zero on success, one if
	   the given code set is incomplete (the tables are still built in this
	   case), two if the input is invalid (all zero length codes or an
	   oversubscribed set of lengths), and three if not enough memory.
	   The code with value 256 is special, and the tables are constructed
	   so that no bits beyond that code are fetched when that code is
	   decoded. */
		var a; // counter for codes of length k
		var c = [];
		var el; // length of EOB code (value 256)
		var f; // i repeats in table every f entries
		var g; // maximum code length
		var h; // table level
		var i; // counter, current code
		var j; // counter
		var k; // number of bits in current code
		var lx = [];
		var p; // pointer into c[], b[], or v[]
		var pidx; // index of p
		var q; // (HuftNode) points to current table
		var r = new HuftNode(); // table entry for structure assignment
		var u = [];
		var v = [];
		var w;
		var x = [];
		var xp; // pointer into x or c
		var y; // number of dummy codes added
		var z; // number of entries in current table
		var o;
		var tail; // (HuftList)

		tail = this.root = null;

		// bit length count table
		for (i = 0; i < this.BMAX + 1; i++) {
			c[i] = 0;
		}
		// stack of bits per table
		for (i = 0; i < this.BMAX + 1; i++) {
			lx[i] = 0;
		}
		// HuftNode[BMAX][]  table stack
		for (i = 0; i < this.BMAX; i++) {
			u[i] = null;
		}
		// values in order of bit length
		for (i = 0; i < this.N_MAX; i++) {
			v[i] = 0;
		}
		// bit offsets, then code stack
		for (i = 0; i < this.BMAX + 1; i++) {
			x[i] = 0;
		}

		// Generate counts for each bit length
		el = n > 256 ? b[256] : this.BMAX; // set length of EOB code, if any
		p = b; pidx = 0;
		i = n;
		do {
			c[p[pidx]]++; // assume all entries <= BMAX
			pidx++;
		} while (--i > 0);
		if (c[0] === n) { // null input--all zero length codes
			this.root = null;
			this.m = 0;
			this.status = 0;
			return;
		}

		// Find minimum and maximum length, bound *m by those
		for (j = 1; j <= this.BMAX; j++) {
			if (c[j] !== 0) {
				break;
			}
		}
		k = j; // minimum code length
		if (mm < j) {
			mm = j;
		}
		for (i = this.BMAX; i !== 0; i--) {
			if (c[i] !== 0) {
				break;
			}
		}
		g = i; // maximum code length
		if (mm > i) {
			mm = i;
		}

		// Adjust last length count to fill out codes, if needed
		for (y = 1 << j; j < i; j++, y <<= 1) {
			if ((y -= c[j]) < 0) {
				this.status = 2; // bad input: more codes than bits
				this.m = mm;
				return;
			}
		}
		if ((y -= c[i]) < 0) {
			this.status = 2;
			this.m = mm;
			return;
		}
		c[i] += y;

		// Generate starting offsets into the value table for each length
		x[1] = j = 0;
		p = c;
		pidx = 1;
		xp = 2;
		while (--i > 0) { // note that i == g from above
			x[xp++] = (j += p[pidx++]);
		}

		// Make a table of values in order of bit lengths
		p = b; pidx = 0;
		i = 0;
		do {
			if ((j = p[pidx++]) !== 0) {
				v[x[j]++] = i;
			}
		} while (++i < n);
		n = x[g]; // set n to length of v

		// Generate the Huffman codes and for each, make the table entries
		x[0] = i = 0; // first Huffman code is zero
		p = v; pidx = 0; // grab values in bit order
		h = -1; // no tables yet--level -1
		w = lx[0] = 0; // no bits decoded yet
		q = null; // ditto
		z = 0; // ditto

		// go through the bit lengths (k already is bits in shortest code)
		for (null; k <= g; k++) {
			a = c[k];
			while (a-- > 0) {
				// here i is the Huffman code of length k bits for value p[pidx]
				// make tables up to required level
				while (k > w + lx[1 + h]) {
					w += lx[1 + h]; // add bits already decoded
					h++;

					// compute minimum size table less than or equal to *m bits
					z = (z = g - w) > mm ? mm : z; // upper limit
					if ((f = 1 << (j = k - w)) > a + 1) { // try a k-w bit table
						// too few codes for k-w bit table
						f -= a + 1; // deduct codes from patterns left
						xp = k;
						while (++j < z) { // try smaller tables up to z bits
							if ((f <<= 1) <= c[++xp]) {
								break; // enough codes to use up j bits
							}
							f -= c[xp]; // else deduct codes from patterns
						}
					}
					if (w + j > el && w < el) {
						j = el - w; // make EOB code end at table
					}
					z = 1 << j; // table entries for j-bit table
					lx[1 + h] = j; // set table size in stack

					// allocate and link in new table
					q = [];
					for (o = 0; o < z; o++) {
						q[o] = new HuftNode();
					}

					if (!tail) {
						tail = this.root = new HuftList();
					} else {
						tail = tail.next = new HuftList();
					}
					tail.next = null;
					tail.list = q;
					u[h] = q; // table starts after link

					/* connect to last table, if there is one */
					if (h > 0) {
						x[h] = i; // save pattern for backing up
						r.b = lx[h]; // bits to dump before this table
						r.e = 16 + j; // bits in this table
						r.t = q; // pointer to this table
						j = (i & ((1 << w) - 1)) >> (w - lx[h]);
						u[h - 1][j].e = r.e;
						u[h - 1][j].b = r.b;
						u[h - 1][j].n = r.n;
						u[h - 1][j].t = r.t;
					}
				}

				// set up table entry in r
				r.b = k - w;
				if (pidx >= n) {
					r.e = 99; // out of values--invalid code
				} else if (p[pidx] < s) {
					r.e = (p[pidx] < 256 ? 16 : 15); // 256 is end-of-block code
					r.n = p[pidx++]; // simple code is just the value
				} else {
					r.e = e[p[pidx] - s]; // non-simple--look up in lists
					r.n = d[p[pidx++] - s];
				}

				// fill code-like entries with r //
				f = 1 << (k - w);
				for (j = i >> w; j < z; j += f) {
					q[j].e = r.e;
					q[j].b = r.b;
					q[j].n = r.n;
					q[j].t = r.t;
				}

				// backwards increment the k-bit code i
				for (j = 1 << (k - 1); (i & j) !== 0; j >>= 1) {
					i ^= j;
				}
				i ^= j;

				// backup over finished tables
				while ((i & ((1 << w) - 1)) !== x[h]) {
					w -= lx[h]; // don't need to update q
					h--;
				}
			}
		}

		/* return actual size of base table */
		this.m = lx[1];

		/* Return true (1) if we were given an incomplete table */
		this.status = ((y !== 0 && g !== 1) ? 1 : 0);
	}


	/* routines (inflate) */

	function GET_BYTE() {
		if (inflate_data.length === inflate_pos) {
			return -1;
		}
		return inflate_data[inflate_pos++] & 0xff;
	}

	function NEEDBITS(n) {
		while (bit_len < n) {
			bit_buf |= GET_BYTE() << bit_len;
			bit_len += 8;
		}
	}

	function GETBITS(n) {
		return bit_buf & MASK_BITS[n];
	}

	function DUMPBITS(n) {
		bit_buf >>= n;
		bit_len -= n;
	}

	function inflate_codes(buff, off, size) {
		// inflate (decompress) the codes in a deflated (compressed) block.
		// Return an error code or zero if it all goes ok.
		var e; // table entry flag/number of extra bits
		var t; // (HuftNode) pointer to table entry
		var n;

		if (size === 0) {
			return 0;
		}

		// inflate the coded data
		n = 0;
		for (;;) { // do until end of block
			NEEDBITS(bl);
			t = tl.list[GETBITS(bl)];
			e = t.e;
			while (e > 16) {
				if (e === 99) {
					return -1;
				}
				DUMPBITS(t.b);
				e -= 16;
				NEEDBITS(e);
				t = t.t[GETBITS(e)];
				e = t.e;
			}
			DUMPBITS(t.b);

			if (e === 16) { // then it's a literal
				wp &= WSIZE - 1;
				buff[off + n++] = slide[wp++] = t.n;
				if (n === size) {
					return size;
				}
				continue;
			}

			// exit if end of block
			if (e === 15) {
				break;
			}

			// it's an EOB or a length

			// get length of block to copy
			NEEDBITS(e);
			copy_leng = t.n + GETBITS(e);
			DUMPBITS(e);

			// decode distance of block to copy
			NEEDBITS(bd);
			t = td.list[GETBITS(bd)];
			e = t.e;

			while (e > 16) {
				if (e === 99) {
					return -1;
				}
				DUMPBITS(t.b);
				e -= 16;
				NEEDBITS(e);
				t = t.t[GETBITS(e)];
				e = t.e;
			}
			DUMPBITS(t.b);
			NEEDBITS(e);
			copy_dist = wp - t.n - GETBITS(e);
			DUMPBITS(e);

			// do the copy
			while (copy_leng > 0 && n < size) {
				copy_leng--;
				copy_dist &= WSIZE - 1;
				wp &= WSIZE - 1;
				buff[off + n++] = slide[wp++] = slide[copy_dist++];
			}

			if (n === size) {
				return size;
			}
		}

		method = -1; // done
		return n;
	}

	function inflate_stored(buff, off, size) {
		/* "decompress" an inflated type 0 (stored) block. */
		var n;

		// go to byte boundary
		n = bit_len & 7;
		DUMPBITS(n);

		// get the length and its complement
		NEEDBITS(16);
		n = GETBITS(16);
		DUMPBITS(16);
		NEEDBITS(16);
		if (n !== ((~bit_buf) & 0xffff)) {
			return -1; // error in compressed data
		}
		DUMPBITS(16);

		// read and output the compressed data
		copy_leng = n;

		n = 0;
		while (copy_leng > 0 && n < size) {
			copy_leng--;
			wp &= WSIZE - 1;
			NEEDBITS(8);
			buff[off + n++] = slide[wp++] = GETBITS(8);
			DUMPBITS(8);
		}

		if (copy_leng === 0) {
			method = -1; // done
		}
		return n;
	}

	function inflate_fixed(buff, off, size) {
		// decompress an inflated type 1 (fixed Huffman codes) block.  We should
		// either replace this with a custom decoder, or at least precompute the
		// Huffman tables.

		// if first time, set up tables for fixed blocks
		if (!fixed_tl) {
			var i; // temporary variable
			var l = []; // 288 length list for huft_build (initialized below)
			var h; // HuftBuild

			// literal table
			for (i = 0; i < 144; i++) {
				l[i] = 8;
			}
			for (null; i < 256; i++) {
				l[i] = 9;
			}
			for (null; i < 280; i++) {
				l[i] = 7;
			}
			for (null; i < 288; i++) { // make a complete, but wrong code set
				l[i] = 8;
			}
			fixed_bl = 7;

			h = new HuftBuild(l, 288, 257, cplens, cplext, fixed_bl);
			if (h.status !== 0) {
				console.error("HufBuild error: " + h.status);
				return -1;
			}
			fixed_tl = h.root;
			fixed_bl = h.m;

			// distance table
			for (i = 0; i < 30; i++) { // make an incomplete code set
				l[i] = 5;
			}
			fixed_bd = 5;

			h = new HuftBuild(l, 30, 0, cpdist, cpdext, fixed_bd);
			if (h.status > 1) {
				fixed_tl = null;
				console.error("HufBuild error: " + h.status);
				return -1;
			}
			fixed_td = h.root;
			fixed_bd = h.m;
		}

		tl = fixed_tl;
		td = fixed_td;
		bl = fixed_bl;
		bd = fixed_bd;
		return inflate_codes(buff, off, size);
	}

	function inflate_dynamic(buff, off, size) {
		// decompress an inflated type 2 (dynamic Huffman codes) block.
		var i; // temporary variables
		var j;
		var l; // last length
		var n; // number of lengths to get
		var t; // (HuftNode) literal/length code table
		var nb; // number of bit length codes
		var nl; // number of literal/length codes
		var nd; // number of distance codes
		var ll = [];
		var h; // (HuftBuild)

		// literal/length and distance code lengths
		for (i = 0; i < 286 + 30; i++) {
			ll[i] = 0;
		}

		// read in table lengths
		NEEDBITS(5);
		nl = 257 + GETBITS(5); // number of literal/length codes
		DUMPBITS(5);
		NEEDBITS(5);
		nd = 1 + GETBITS(5); // number of distance codes
		DUMPBITS(5);
		NEEDBITS(4);
		nb = 4 + GETBITS(4); // number of bit length codes
		DUMPBITS(4);
		if (nl > 286 || nd > 30) {
			return -1; // bad lengths
		}

		// read in bit-length-code lengths
		for (j = 0; j < nb; j++) {
			NEEDBITS(3);
			ll[border[j]] = GETBITS(3);
			DUMPBITS(3);
		}
		for (null; j < 19; j++) {
			ll[border[j]] = 0;
		}

		// build decoding table for trees--single level, 7 bit lookup
		bl = 7;
		h = new HuftBuild(ll, 19, 19, null, null, bl);
		if (h.status !== 0) {
			return -1; // incomplete code set
		}

		tl = h.root;
		bl = h.m;

		// read in literal and distance code lengths
		n = nl + nd;
		i = l = 0;
		while (i < n) {
			NEEDBITS(bl);
			t = tl.list[GETBITS(bl)];
			j = t.b;
			DUMPBITS(j);
			j = t.n;
			if (j < 16) { // length of code in bits (0..15)
				ll[i++] = l = j; // save last length in l
			} else if (j === 16) { // repeat last length 3 to 6 times
				NEEDBITS(2);
				j = 3 + GETBITS(2);
				DUMPBITS(2);
				if (i + j > n) {
					return -1;
				}
				while (j-- > 0) {
					ll[i++] = l;
				}
			} else if (j === 17) { // 3 to 10 zero length codes
				NEEDBITS(3);
				j = 3 + GETBITS(3);
				DUMPBITS(3);
				if (i + j > n) {
					return -1;
				}
				while (j-- > 0) {
					ll[i++] = 0;
				}
				l = 0;
			} else { // j === 18: 11 to 138 zero length codes
				NEEDBITS(7);
				j = 11 + GETBITS(7);
				DUMPBITS(7);
				if (i + j > n) {
					return -1;
				}
				while (j-- > 0) {
					ll[i++] = 0;
				}
				l = 0;
			}
		}

		// build the decoding tables for literal/length and distance codes
		bl = lbits;
		h = new HuftBuild(ll, nl, 257, cplens, cplext, bl);
		if (bl === 0) { // no literals or lengths
			h.status = 1;
		}
		if (h.status !== 0) {
			if (h.status !== 1) {
				return -1; // incomplete code set
			}
			// **incomplete literal tree**
		}
		tl = h.root;
		bl = h.m;

		for (i = 0; i < nd; i++) {
			ll[i] = ll[i + nl];
		}
		bd = dbits;
		h = new HuftBuild(ll, nd, 0, cpdist, cpdext, bd);
		td = h.root;
		bd = h.m;

		if (bd === 0 && nl > 257) { // lengths but no distances
			// **incomplete distance tree**
			return -1;
		}
/*
		if (h.status === 1) {
			// **incomplete distance tree**
		}
*/
		if (h.status !== 0) {
			return -1;
		}

		// decompress until an end-of-block code
		return inflate_codes(buff, off, size);
	}

	function inflate_start() {
		if (!slide) {
			slide = []; // new Array(2 * WSIZE); // slide.length is never called
		}
		wp = 0;
		bit_buf = 0;
		bit_len = 0;
		method = -1;
		eof = false;
		copy_leng = copy_dist = 0;
		tl = null;
	}

	function inflate_internal(buff, off, size) {
		// decompress an inflated entry
		var n, i;

		n = 0;
		while (n < size) {
			if (eof && method === -1) {
				return n;
			}

			if (copy_leng > 0) {
				if (method !== STORED_BLOCK) {
					// STATIC_TREES or DYN_TREES
					while (copy_leng > 0 && n < size) {
						copy_leng--;
						copy_dist &= WSIZE - 1;
						wp &= WSIZE - 1;
						buff[off + n++] = slide[wp++] = slide[copy_dist++];
					}
				} else {
					while (copy_leng > 0 && n < size) {
						copy_leng--;
						wp &= WSIZE - 1;
						NEEDBITS(8);
						buff[off + n++] = slide[wp++] = GETBITS(8);
						DUMPBITS(8);
					}
					if (copy_leng === 0) {
						method = -1; // done
					}
				}
				if (n === size) {
					return n;
				}
			}

			if (method === -1) {
				if (eof) {
					break;
				}

				// read in last block bit
				NEEDBITS(1);
				if (GETBITS(1) !== 0) {
					eof = true;
				}
				DUMPBITS(1);

				// read in block type
				NEEDBITS(2);
				method = GETBITS(2);
				DUMPBITS(2);
				tl = null;
				copy_leng = 0;
			}

			switch (method) {
			case STORED_BLOCK:
				i = inflate_stored(buff, off + n, size - n);
				break;

			case STATIC_TREES:
				if (tl) {
					i = inflate_codes(buff, off + n, size - n);
				} else {
					i = inflate_fixed(buff, off + n, size - n);
				}
				break;

			case DYN_TREES:
				if (tl) {
					i = inflate_codes(buff, off + n, size - n);
				} else {
					i = inflate_dynamic(buff, off + n, size - n);
				}
				break;

			default: // error
				i = -1;
				break;
			}

			if (i === -1) {
				if (eof) {
					return 0;
				}
				return -1;
			}
			n += i;
		}
		return n;
	}

	function inflate(arr) {
		var buff = [], i;

		inflate_start();
		inflate_data = arr;
		inflate_pos = 0;

		do {
			i = inflate_internal(buff, buff.length, 1024);
		} while (i > 0);
		inflate_data = null; // G.C.
		return buff;
	}

	module.exports = inflate;
}());