b11468f4e2c56b0848c4c53d5b81aaf29fe1799e.svn-base 48.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
/*
 * $Id: rawdeflate.js,v 0.3 2009/03/01 19:05:05 dankogai Exp dankogai $
 *
 * Original:
 *   http://www.onicos.com/staff/iz/amuse/javascript/expert/deflate.txt
 */

/* Copyright (C) 1999 Masanao Izumo <iz@onicos.co.jp>
 * Version: 1.0.1
 * LastModified: Dec 25 1999
 */

/* Interface:
 * data = deflate(src);
 */

(function () {
	/* constant parameters */
	var WSIZE = 32768, // Sliding Window size
		STORED_BLOCK = 0,
		STATIC_TREES = 1,
		DYN_TREES = 2,

	/* for deflate */
		DEFAULT_LEVEL = 6,
		FULL_SEARCH = false,
		INBUFSIZ = 32768, // Input buffer size
		//INBUF_EXTRA = 64, // Extra buffer
		OUTBUFSIZ = 1024 * 8,
		window_size = 2 * WSIZE,
		MIN_MATCH = 3,
		MAX_MATCH = 258,
		BITS = 16,
	// for SMALL_MEM
		LIT_BUFSIZE = 0x2000,
//		HASH_BITS = 13,
	//for MEDIUM_MEM
	//	LIT_BUFSIZE = 0x4000,
	//	HASH_BITS = 14,
	// for BIG_MEM
	//	LIT_BUFSIZE = 0x8000,
		HASH_BITS = 15,
		DIST_BUFSIZE = LIT_BUFSIZE,
		HASH_SIZE = 1 << HASH_BITS,
		HASH_MASK = HASH_SIZE - 1,
		WMASK = WSIZE - 1,
		NIL = 0, // Tail of hash chains
		TOO_FAR = 4096,
		MIN_LOOKAHEAD = MAX_MATCH + MIN_MATCH + 1,
		MAX_DIST = WSIZE - MIN_LOOKAHEAD,
		SMALLEST = 1,
		MAX_BITS = 15,
		MAX_BL_BITS = 7,
		LENGTH_CODES = 29,
		LITERALS = 256,
		END_BLOCK = 256,
		L_CODES = LITERALS + 1 + LENGTH_CODES,
		D_CODES = 30,
		BL_CODES = 19,
		REP_3_6 = 16,
		REPZ_3_10 = 17,
		REPZ_11_138 = 18,
		HEAP_SIZE = 2 * L_CODES + 1,
		H_SHIFT = parseInt((HASH_BITS + MIN_MATCH - 1) / MIN_MATCH, 10),

	/* variables */
		free_queue,
		qhead,
		qtail,
		initflag,
		outbuf = null,
		outcnt,
		outoff,
		complete,
		window,
		d_buf,
		l_buf,
		prev,
		bi_buf,
		bi_valid,
		block_start,
		ins_h,
		hash_head,
		prev_match,
		match_available,
		match_length,
		prev_length,
		strstart,
		match_start,
		eofile,
		lookahead,
		max_chain_length,
		max_lazy_match,
		compr_level,
		good_match,
		nice_match,
		dyn_ltree,
		dyn_dtree,
		static_ltree,
		static_dtree,
		bl_tree,
		l_desc,
		d_desc,
		bl_desc,
		bl_count,
		heap,
		heap_len,
		heap_max,
		depth,
		length_code,
		dist_code,
		base_length,
		base_dist,
		flag_buf,
		last_lit,
		last_dist,
		last_flags,
		flags,
		flag_bit,
		opt_len,
		static_len,
		deflate_data,
		deflate_pos;

	if (LIT_BUFSIZE > INBUFSIZ) {
		console.error("error: INBUFSIZ is too small");
	}
	if ((WSIZE << 1) > (1 << BITS)) {
		console.error("error: WSIZE is too large");
	}
	if (HASH_BITS > BITS - 1) {
		console.error("error: HASH_BITS is too large");
	}
	if (HASH_BITS < 8 || MAX_MATCH !== 258) {
		console.error("error: Code too clever");
	}

	/* objects (deflate) */

	function DeflateCT() {
		this.fc = 0; // frequency count or bit string
		this.dl = 0; // father node in Huffman tree or length of bit string
	}

	function DeflateTreeDesc() {
		this.dyn_tree = null; // the dynamic tree
		this.static_tree = null; // corresponding static tree or NULL
		this.extra_bits = null; // extra bits for each code or NULL
		this.extra_base = 0; // base index for extra_bits
		this.elems = 0; // max number of elements in the tree
		this.max_length = 0; // max bit length for the codes
		this.max_code = 0; // largest code with non zero frequency
	}

	/* Values for max_lazy_match, good_match and max_chain_length, depending on
	 * the desired pack level (0..9). The values given below have been tuned to
	 * exclude worst case performance for pathological files. Better values may be
	 * found for specific files.
	 */
	function DeflateConfiguration(a, b, c, d) {
		this.good_length = a; // reduce lazy search above this match length
		this.max_lazy = b; // do not perform lazy search above this match length
		this.nice_length = c; // quit search above this match length
		this.max_chain = d;
	}

	function DeflateBuffer() {
		this.next = null;
		this.len = 0;
		this.ptr = []; // new Array(OUTBUFSIZ); // ptr.length is never read
		this.off = 0;
	}

	/* constant tables */
	var extra_lbits = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0];
	var extra_dbits = [0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13];
	var extra_blbits = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7];
	var bl_order = [16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15];
	var configuration_table = [
		new DeflateConfiguration(0, 0, 0, 0),
		new DeflateConfiguration(4, 4, 8, 4),
		new DeflateConfiguration(4, 5, 16, 8),
		new DeflateConfiguration(4, 6, 32, 32),
		new DeflateConfiguration(4, 4, 16, 16),
		new DeflateConfiguration(8, 16, 32, 32),
		new DeflateConfiguration(8, 16, 128, 128),
		new DeflateConfiguration(8, 32, 128, 256),
		new DeflateConfiguration(32, 128, 258, 1024),
		new DeflateConfiguration(32, 258, 258, 4096)
	];


	/* routines (deflate) */

	function deflate_start(level) {
		var i;

		if (!level) {
			level = DEFAULT_LEVEL;
		} else if (level < 1) {
			level = 1;
		} else if (level > 9) {
			level = 9;
		}

		compr_level = level;
		initflag = false;
		eofile = false;
		if (outbuf !== null) {
			return;
		}

		free_queue = qhead = qtail = null;
		outbuf = []; // new Array(OUTBUFSIZ); // outbuf.length never called
		window = []; // new Array(window_size); // window.length never called
		d_buf = []; // new Array(DIST_BUFSIZE); // d_buf.length never called
		l_buf = []; // new Array(INBUFSIZ + INBUF_EXTRA); // l_buf.length never called
		prev = []; // new Array(1 << BITS); // prev.length never called

		dyn_ltree = [];
		for (i = 0; i < HEAP_SIZE; i++) {
			dyn_ltree[i] = new DeflateCT();
		}
		dyn_dtree = [];
		for (i = 0; i < 2 * D_CODES + 1; i++) {
			dyn_dtree[i] = new DeflateCT();
		}
		static_ltree = [];
		for (i = 0; i < L_CODES + 2; i++) {
			static_ltree[i] = new DeflateCT();
		}
		static_dtree = [];
		for (i = 0; i < D_CODES; i++) {
			static_dtree[i] = new DeflateCT();
		}
		bl_tree = [];
		for (i = 0; i < 2 * BL_CODES + 1; i++) {
			bl_tree[i] = new DeflateCT();
		}
		l_desc = new DeflateTreeDesc();
		d_desc = new DeflateTreeDesc();
		bl_desc = new DeflateTreeDesc();
		bl_count = []; // new Array(MAX_BITS+1); // bl_count.length never called
		heap = []; // new Array(2*L_CODES+1); // heap.length never called
		depth = []; // new Array(2*L_CODES+1); // depth.length never called
		length_code = []; // new Array(MAX_MATCH-MIN_MATCH+1); // length_code.length never called
		dist_code = []; // new Array(512); // dist_code.length never called
		base_length = []; // new Array(LENGTH_CODES); // base_length.length never called
		base_dist = []; // new Array(D_CODES); // base_dist.length never called
		flag_buf = []; // new Array(parseInt(LIT_BUFSIZE / 8, 10)); // flag_buf.length never called
	}

	function deflate_end() {
		free_queue = qhead = qtail = null;
		outbuf = null;
		window = null;
		d_buf = null;
		l_buf = null;
		prev = null;
		dyn_ltree = null;
		dyn_dtree = null;
		static_ltree = null;
		static_dtree = null;
		bl_tree = null;
		l_desc = null;
		d_desc = null;
		bl_desc = null;
		bl_count = null;
		heap = null;
		depth = null;
		length_code = null;
		dist_code = null;
		base_length = null;
		base_dist = null;
		flag_buf = null;
	}

	function reuse_queue(p) {
		p.next = free_queue;
		free_queue = p;
	}

	function new_queue() {
		var p;

		if (free_queue !== null) {
			p = free_queue;
			free_queue = free_queue.next;
		} else {
			p = new DeflateBuffer();
		}
		p.next = null;
		p.len = p.off = 0;

		return p;
	}

	function head1(i) {
		return prev[WSIZE + i];
	}

	function head2(i, val) {
		return (prev[WSIZE + i] = val);
	}

	/* put_byte is used for the compressed output, put_ubyte for the
	 * uncompressed output. However unlzw() uses window for its
	 * suffix table instead of its output buffer, so it does not use put_ubyte
	 * (to be cleaned up).
	 */
	function put_byte(c) {
		outbuf[outoff + outcnt++] = c;
		if (outoff + outcnt === OUTBUFSIZ) {
			qoutbuf();
		}
	}

	/* Output a 16 bit value, lsb first */
	function put_short(w) {
		w &= 0xffff;
		if (outoff + outcnt < OUTBUFSIZ - 2) {
			outbuf[outoff + outcnt++] = (w & 0xff);
			outbuf[outoff + outcnt++] = (w >>> 8);
		} else {
			put_byte(w & 0xff);
			put_byte(w >>> 8);
		}
	}

	/* ==========================================================================
	 * Insert string s in the dictionary and set match_head to the previous head
	 * of the hash chain (the most recent string with same hash key). Return
	 * the previous length of the hash chain.
	 * IN  assertion: all calls to to INSERT_STRING are made with consecutive
	 *    input characters and the first MIN_MATCH bytes of s are valid
	 *    (except for the last MIN_MATCH-1 bytes of the input file).
	 */
	function INSERT_STRING() {
		ins_h = ((ins_h << H_SHIFT) ^ (window[strstart + MIN_MATCH - 1] & 0xff)) & HASH_MASK;
		hash_head = head1(ins_h);
		prev[strstart & WMASK] = hash_head;
		head2(ins_h, strstart);
	}

	/* Send a code of the given tree. c and tree must not have side effects */
	function SEND_CODE(c, tree) {
		send_bits(tree[c].fc, tree[c].dl);
	}

	/* Mapping from a distance to a distance code. dist is the distance - 1 and
	 * must not have side effects. dist_code[256] and dist_code[257] are never
	 * used.
	 */
	function D_CODE(dist) {
		return (dist < 256 ? dist_code[dist] : dist_code[256 + (dist >> 7)]) & 0xff;
	}

	/* ==========================================================================
	 * Compares to subtrees, using the tree depth as tie breaker when
	 * the subtrees have equal frequency. This minimizes the worst case length.
	 */
	function SMALLER(tree, n, m) {
		return tree[n].fc < tree[m].fc || (tree[n].fc === tree[m].fc && depth[n] <= depth[m]);
	}

	/* ==========================================================================
	 * read string data
	 */
	function read_buff(buff, offset, n) {
		var i;
		for (i = 0; i < n && deflate_pos < deflate_data.length; i++) {
			buff[offset + i] = deflate_data[deflate_pos++] & 0xff;
		}
		return i;
	}

	/* ==========================================================================
	 * Initialize the "longest match" routines for a new file
	 */
	function lm_init() {
		var j;

		// Initialize the hash table. */
		for (j = 0; j < HASH_SIZE; j++) {
			// head2(j, NIL);
			prev[WSIZE + j] = 0;
		}
		// prev will be initialized on the fly */

		// Set the default configuration parameters:
		max_lazy_match = configuration_table[compr_level].max_lazy;
		good_match = configuration_table[compr_level].good_length;
		if (!FULL_SEARCH) {
			nice_match = configuration_table[compr_level].nice_length;
		}
		max_chain_length = configuration_table[compr_level].max_chain;

		strstart = 0;
		block_start = 0;

		lookahead = read_buff(window, 0, 2 * WSIZE);
		if (lookahead <= 0) {
			eofile = true;
			lookahead = 0;
			return;
		}
		eofile = false;
		// Make sure that we always have enough lookahead. This is important
		// if input comes from a device such as a tty.
		while (lookahead < MIN_LOOKAHEAD && !eofile) {
			fill_window();
		}

		// If lookahead < MIN_MATCH, ins_h is garbage, but this is
		// not important since only literal bytes will be emitted.
		ins_h = 0;
		for (j = 0; j < MIN_MATCH - 1; j++) {
			// UPDATE_HASH(ins_h, window[j]);
			ins_h = ((ins_h << H_SHIFT) ^ (window[j] & 0xff)) & HASH_MASK;
		}
	}

	/* ==========================================================================
	 * Set match_start to the longest match starting at the given string and
	 * return its length. Matches shorter or equal to prev_length are discarded,
	 * in which case the result is equal to prev_length and match_start is
	 * garbage.
	 * IN assertions: cur_match is the head of the hash chain for the current
	 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
	 */
	function longest_match(cur_match) {
		var chain_length = max_chain_length; // max hash chain length
		var scanp = strstart; // current string
		var matchp; // matched string
		var len; // length of current match
		var best_len = prev_length; // best match length so far

		// Stop when cur_match becomes <= limit. To simplify the code,
		// we prevent matches with the string of window index 0.
		var limit = (strstart > MAX_DIST ? strstart - MAX_DIST : NIL);

		var strendp = strstart + MAX_MATCH;
		var scan_end1 = window[scanp + best_len - 1];
		var scan_end = window[scanp + best_len];

		var i, broke;

		// Do not waste too much time if we already have a good match: */
		if (prev_length >= good_match) {
			chain_length >>= 2;
		}

		// Assert(encoder->strstart <= window_size-MIN_LOOKAHEAD, "insufficient lookahead");

		do {
			// Assert(cur_match < encoder->strstart, "no future");
			matchp = cur_match;

			// Skip to next match if the match length cannot increase
			// or if the match length is less than 2:
			if (window[matchp + best_len] !== scan_end  ||
					window[matchp + best_len - 1] !== scan_end1 ||
					window[matchp] !== window[scanp] ||
					window[++matchp] !== window[scanp + 1]) {
				continue;
			}

			// The check at best_len-1 can be removed because it will be made
			// again later. (This heuristic is not always a win.)
			// It is not necessary to compare scan[2] and match[2] since they
			// are always equal when the other bytes match, given that
			// the hash keys are equal and that HASH_BITS >= 8.
			scanp += 2;
			matchp++;

			// We check for insufficient lookahead only every 8th comparison;
			// the 256th check will be made at strstart+258.
			while (scanp < strendp) {
				broke = false;
				for (i = 0; i < 8; i += 1) {
					scanp += 1;
					matchp += 1;
					if (window[scanp] !== window[matchp]) {
						broke = true;
						break;
					}
				}

				if (broke) {
					break;
				}
			}

			len = MAX_MATCH - (strendp - scanp);
			scanp = strendp - MAX_MATCH;

			if (len > best_len) {
				match_start = cur_match;
				best_len = len;
				if (FULL_SEARCH) {
					if (len >= MAX_MATCH) {
						break;
					}
				} else {
					if (len >= nice_match) {
						break;
					}
				}

				scan_end1 = window[scanp + best_len - 1];
				scan_end = window[scanp + best_len];
			}
		} while ((cur_match = prev[cur_match & WMASK]) > limit && --chain_length !== 0);

		return best_len;
	}

	/* ==========================================================================
	 * Fill the window when the lookahead becomes insufficient.
	 * Updates strstart and lookahead, and sets eofile if end of input file.
	 * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
	 * OUT assertions: at least one byte has been read, or eofile is set;
	 *    file reads are performed for at least two bytes (required for the
	 *    translate_eol option).
	 */
	function fill_window() {
		var n, m;

	 // Amount of free space at the end of the window.
		var more = window_size - lookahead - strstart;

		// If the window is almost full and there is insufficient lookahead,
		// move the upper half to the lower one to make room in the upper half.
		if (more === -1) {
			// Very unlikely, but possible on 16 bit machine if strstart == 0
			// and lookahead == 1 (input done one byte at time)
			more--;
		} else if (strstart >= WSIZE + MAX_DIST) {
			// By the IN assertion, the window is not empty so we can't confuse
			// more == 0 with more == 64K on a 16 bit machine.
			// Assert(window_size == (ulg)2*WSIZE, "no sliding with BIG_MEM");

			// System.arraycopy(window, WSIZE, window, 0, WSIZE);
			for (n = 0; n < WSIZE; n++) {
				window[n] = window[n + WSIZE];
			}

			match_start -= WSIZE;
			strstart    -= WSIZE; /* we now have strstart >= MAX_DIST: */
			block_start -= WSIZE;

			for (n = 0; n < HASH_SIZE; n++) {
				m = head1(n);
				head2(n, m >= WSIZE ? m - WSIZE : NIL);
			}
			for (n = 0; n < WSIZE; n++) {
			// If n is not on any hash chain, prev[n] is garbage but
			// its value will never be used.
				m = prev[n];
				prev[n] = (m >= WSIZE ? m - WSIZE : NIL);
			}
			more += WSIZE;
		}
		// At this point, more >= 2
		if (!eofile) {
			n = read_buff(window, strstart + lookahead, more);
			if (n <= 0) {
				eofile = true;
			} else {
				lookahead += n;
			}
		}
	}

	/* ==========================================================================
	 * Processes a new input file and return its compressed length. This
	 * function does not perform lazy evaluationof matches and inserts
	 * new strings in the dictionary only for unmatched strings or for short
	 * matches. It is used only for the fast compression options.
	 */
	function deflate_fast() {
		while (lookahead !== 0 && qhead === null) {
			var flush; // set if current block must be flushed

			// Insert the string window[strstart .. strstart+2] in the
			// dictionary, and set hash_head to the head of the hash chain:
			INSERT_STRING();

			// Find the longest match, discarding those <= prev_length.
			// At this point we have always match_length < MIN_MATCH
			if (hash_head !== NIL && strstart - hash_head <= MAX_DIST) {
				// To simplify the code, we prevent matches with the string
				// of window index 0 (in particular we have to avoid a match
				// of the string with itself at the start of the input file).
				match_length = longest_match(hash_head);
				// longest_match() sets match_start */
				if (match_length > lookahead) {
					match_length = lookahead;
				}
			}
			if (match_length >= MIN_MATCH) {
				// check_match(strstart, match_start, match_length);

				flush = ct_tally(strstart - match_start, match_length - MIN_MATCH);
				lookahead -= match_length;

				// Insert new strings in the hash table only if the match length
				// is not too large. This saves time but degrades compression.
				if (match_length <= max_lazy_match) {
					match_length--; // string at strstart already in hash table
					do {
						strstart++;
						INSERT_STRING();
						// strstart never exceeds WSIZE-MAX_MATCH, so there are
						// always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
						// these bytes are garbage, but it does not matter since
						// the next lookahead bytes will be emitted as literals.
					} while (--match_length !== 0);
					strstart++;
				} else {
					strstart += match_length;
					match_length = 0;
					ins_h = window[strstart] & 0xff;
					// UPDATE_HASH(ins_h, window[strstart + 1]);
					ins_h = ((ins_h << H_SHIFT) ^ (window[strstart + 1] & 0xff)) & HASH_MASK;

				//#if MIN_MATCH !== 3
				//		Call UPDATE_HASH() MIN_MATCH-3 more times
				//#endif

				}
			} else {
				// No match, output a literal byte */
				flush = ct_tally(0, window[strstart] & 0xff);
				lookahead--;
				strstart++;
			}
			if (flush) {
				flush_block(0);
				block_start = strstart;
			}

			// Make sure that we always have enough lookahead, except
			// at the end of the input file. We need MAX_MATCH bytes
			// for the next match, plus MIN_MATCH bytes to insert the
			// string following the next match.
			while (lookahead < MIN_LOOKAHEAD && !eofile) {
				fill_window();
			}
		}
	}

	function deflate_better() {
		// Process the input block. */
		while (lookahead !== 0 && qhead === null) {
			// Insert the string window[strstart .. strstart+2] in the
			// dictionary, and set hash_head to the head of the hash chain:
			INSERT_STRING();

			// Find the longest match, discarding those <= prev_length.
			prev_length = match_length;
			prev_match = match_start;
			match_length = MIN_MATCH - 1;

			if (hash_head !== NIL && prev_length < max_lazy_match && strstart - hash_head <= MAX_DIST) {
				// To simplify the code, we prevent matches with the string
				// of window index 0 (in particular we have to avoid a match
				// of the string with itself at the start of the input file).
				match_length = longest_match(hash_head);
				// longest_match() sets match_start */
				if (match_length > lookahead) {
					match_length = lookahead;
				}

				// Ignore a length 3 match if it is too distant: */
				if (match_length === MIN_MATCH && strstart - match_start > TOO_FAR) {
					// If prev_match is also MIN_MATCH, match_start is garbage
					// but we will ignore the current match anyway.
					match_length--;
				}
			}
			// If there was a match at the previous step and the current
			// match is not better, output the previous match:
			if (prev_length >= MIN_MATCH && match_length <= prev_length) {
				var flush; // set if current block must be flushed

				// check_match(strstart - 1, prev_match, prev_length);
				flush = ct_tally(strstart - 1 - prev_match, prev_length - MIN_MATCH);

				// Insert in hash table all strings up to the end of the match.
				// strstart-1 and strstart are already inserted.
				lookahead -= prev_length - 1;
				prev_length -= 2;
				do {
					strstart++;
					INSERT_STRING();
					// strstart never exceeds WSIZE-MAX_MATCH, so there are
					// always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
					// these bytes are garbage, but it does not matter since the
					// next lookahead bytes will always be emitted as literals.
				} while (--prev_length !== 0);
				match_available = false;
				match_length = MIN_MATCH - 1;
				strstart++;
				if (flush) {
					flush_block(0);
					block_start = strstart;
				}
			} else if (match_available) {
				// If there was no match at the previous position, output a
				// single literal. If there was a match but the current match
				// is longer, truncate the previous match to a single literal.
				if (ct_tally(0, window[strstart - 1] & 0xff)) {
					flush_block(0);
					block_start = strstart;
				}
				strstart++;
				lookahead--;
			} else {
				// There is no previous match to compare with, wait for
				// the next step to decide.
				match_available = true;
				strstart++;
				lookahead--;
			}

			// Make sure that we always have enough lookahead, except
			// at the end of the input file. We need MAX_MATCH bytes
			// for the next match, plus MIN_MATCH bytes to insert the
			// string following the next match.
			while (lookahead < MIN_LOOKAHEAD && !eofile) {
				fill_window();
			}
		}
	}

	function init_deflate() {
		if (eofile) {
			return;
		}
		bi_buf = 0;
		bi_valid = 0;
		ct_init();
		lm_init();

		qhead = null;
		outcnt = 0;
		outoff = 0;

		if (compr_level <= 3) {
			prev_length = MIN_MATCH - 1;
			match_length = 0;
		} else {
			match_length = MIN_MATCH - 1;
			match_available = false;
		}

		complete = false;
	}

	/* ==========================================================================
	 * Same as above, but achieves better compression. We use a lazy
	 * evaluation for matches: a match is finally adopted only if there is
	 * no better match at the next window position.
	 */
	function deflate_internal(buff, off, buff_size) {
		var n;

		if (!initflag) {
			init_deflate();
			initflag = true;
			if (lookahead === 0) { // empty
				complete = true;
				return 0;
			}
		}

		n = qcopy(buff, off, buff_size);
		if (n === buff_size) {
			return buff_size;
		}

		if (complete) {
			return n;
		}

		if (compr_level <= 3) {
			// optimized for speed
			deflate_fast();
		} else {
			deflate_better();
		}

		if (lookahead === 0) {
			if (match_available) {
				ct_tally(0, window[strstart - 1] & 0xff);
			}
			flush_block(1);
			complete = true;
		}

		return n + qcopy(buff, n + off, buff_size - n);
	}

	function qcopy(buff, off, buff_size) {
		var n, i, j;

		n = 0;
		while (qhead !== null && n < buff_size) {
			i = buff_size - n;
			if (i > qhead.len) {
				i = qhead.len;
			}
			// System.arraycopy(qhead.ptr, qhead.off, buff, off + n, i);
			for (j = 0; j < i; j++) {
				buff[off + n + j] = qhead.ptr[qhead.off + j];
			}

			qhead.off += i;
			qhead.len -= i;
			n += i;
			if (qhead.len === 0) {
				var p;
				p = qhead;
				qhead = qhead.next;
				reuse_queue(p);
			}
		}

		if (n === buff_size) {
			return n;
		}

		if (outoff < outcnt) {
			i = buff_size - n;
			if (i > outcnt - outoff) {
				i = outcnt - outoff;
			}
			// System.arraycopy(outbuf, outoff, buff, off + n, i);
			for (j = 0; j < i; j++) {
				buff[off + n + j] = outbuf[outoff + j];
			}
			outoff += i;
			n += i;
			if (outcnt === outoff) {
				outcnt = outoff = 0;
			}
		}
		return n;
	}

	/* ==========================================================================
	 * Allocate the match buffer, initialize the various tables and save the
	 * location of the internal file attribute (ascii/binary) and method
	 * (DEFLATE/STORE).
	 */
	function ct_init() {
		var n; // iterates over tree elements
		var bits; // bit counter
		var length; // length value
		var code; // code value
		var dist; // distance index

		if (static_dtree[0].dl !== 0) {
			return; // ct_init already called
		}

		l_desc.dyn_tree = dyn_ltree;
		l_desc.static_tree = static_ltree;
		l_desc.extra_bits = extra_lbits;
		l_desc.extra_base = LITERALS + 1;
		l_desc.elems = L_CODES;
		l_desc.max_length = MAX_BITS;
		l_desc.max_code = 0;

		d_desc.dyn_tree = dyn_dtree;
		d_desc.static_tree = static_dtree;
		d_desc.extra_bits = extra_dbits;
		d_desc.extra_base = 0;
		d_desc.elems = D_CODES;
		d_desc.max_length = MAX_BITS;
		d_desc.max_code = 0;

		bl_desc.dyn_tree = bl_tree;
		bl_desc.static_tree = null;
		bl_desc.extra_bits = extra_blbits;
		bl_desc.extra_base = 0;
		bl_desc.elems = BL_CODES;
		bl_desc.max_length = MAX_BL_BITS;
		bl_desc.max_code = 0;

	 // Initialize the mapping length (0..255) -> length code (0..28)
		length = 0;
		for (code = 0; code < LENGTH_CODES - 1; code++) {
			base_length[code] = length;
			for (n = 0; n < (1 << extra_lbits[code]); n++) {
				length_code[length++] = code;
			}
		}
	 // Assert (length === 256, "ct_init: length !== 256");

		// Note that the length 255 (match length 258) can be represented
		// in two different ways: code 284 + 5 bits or code 285, so we
		// overwrite length_code[255] to use the best encoding:
		length_code[length - 1] = code;

		// Initialize the mapping dist (0..32K) -> dist code (0..29) */
		dist = 0;
		for (code = 0; code < 16; code++) {
			base_dist[code] = dist;
			for (n = 0; n < (1 << extra_dbits[code]); n++) {
				dist_code[dist++] = code;
			}
		}
		// Assert (dist === 256, "ct_init: dist !== 256");
		// from now on, all distances are divided by 128
		for (dist >>= 7; code < D_CODES; code++) {
			base_dist[code] = dist << 7;
			for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
				dist_code[256 + dist++] = code;
			}
		}
		// Assert (dist === 256, "ct_init: 256+dist !== 512");

		// Construct the codes of the static literal tree
		for (bits = 0; bits <= MAX_BITS; bits++) {
			bl_count[bits] = 0;
		}
		n = 0;
		while (n <= 143) {
			static_ltree[n++].dl = 8;
			bl_count[8]++;
		}
		while (n <= 255) {
			static_ltree[n++].dl = 9;
			bl_count[9]++;
		}
		while (n <= 279) {
			static_ltree[n++].dl = 7;
			bl_count[7]++;
		}
		while (n <= 287) {
			static_ltree[n++].dl = 8;
			bl_count[8]++;
		}
		// Codes 286 and 287 do not exist, but we must include them in the
		// tree construction to get a canonical Huffman tree (longest code
		// all ones)
		gen_codes(static_ltree, L_CODES + 1);

		// The static distance tree is trivial: */
		for (n = 0; n < D_CODES; n++) {
			static_dtree[n].dl = 5;
			static_dtree[n].fc = bi_reverse(n, 5);
		}

		// Initialize the first block of the first file:
		init_block();
	}

	/* ==========================================================================
	 * Initialize a new block.
	 */
	function init_block() {
		var n; // iterates over tree elements

		// Initialize the trees.
		for (n = 0; n < L_CODES;  n++) {
			dyn_ltree[n].fc = 0;
		}
		for (n = 0; n < D_CODES;  n++) {
			dyn_dtree[n].fc = 0;
		}
		for (n = 0; n < BL_CODES; n++) {
			bl_tree[n].fc = 0;
		}

		dyn_ltree[END_BLOCK].fc = 1;
		opt_len = static_len = 0;
		last_lit = last_dist = last_flags = 0;
		flags = 0;
		flag_bit = 1;
	}

	/* ==========================================================================
	 * Restore the heap property by moving down the tree starting at node k,
	 * exchanging a node with the smallest of its two sons if necessary, stopping
	 * when the heap property is re-established (each father smaller than its
	 * two sons).
	 *
	 * @param tree- tree to restore
	 * @param k- node to move down
	 */
	function pqdownheap(tree, k) {
		var v = heap[k],
			j = k << 1; // left son of k

		while (j <= heap_len) {
			// Set j to the smallest of the two sons:
			if (j < heap_len && SMALLER(tree, heap[j + 1], heap[j])) {
				j++;
			}

			// Exit if v is smaller than both sons
			if (SMALLER(tree, v, heap[j])) {
				break;
			}

			// Exchange v with the smallest son
			heap[k] = heap[j];
			k = j;

			// And continue down the tree, setting j to the left son of k
			j <<= 1;
		}
		heap[k] = v;
	}

	/* ==========================================================================
	 * Compute the optimal bit lengths for a tree and update the total bit length
	 * for the current block.
	 * IN assertion: the fields freq and dad are set, heap[heap_max] and
	 *    above are the tree nodes sorted by increasing frequency.
	 * OUT assertions: the field len is set to the optimal bit length, the
	 *     array bl_count contains the frequencies for each bit length.
	 *     The length opt_len is updated; static_len is also updated if stree is
	 *     not null.
	 */
	function gen_bitlen(desc) { // the tree descriptor
		var tree = desc.dyn_tree;
		var extra = desc.extra_bits;
		var base = desc.extra_base;
		var max_code = desc.max_code;
		var max_length = desc.max_length;
		var stree = desc.static_tree;
		var h; // heap index
		var n, m; // iterate over the tree elements
		var bits; // bit length
		var xbits; // extra bits
		var f; // frequency
		var overflow = 0; // number of elements with bit length too large

		for (bits = 0; bits <= MAX_BITS; bits++) {
			bl_count[bits] = 0;
		}

		// In a first pass, compute the optimal bit lengths (which may
		// overflow in the case of the bit length tree).
		tree[heap[heap_max]].dl = 0; // root of the heap

		for (h = heap_max + 1; h < HEAP_SIZE; h++) {
			n = heap[h];
			bits = tree[tree[n].dl].dl + 1;
			if (bits > max_length) {
				bits = max_length;
				overflow++;
			}
			tree[n].dl = bits;
			// We overwrite tree[n].dl which is no longer needed

			if (n > max_code) {
				continue; // not a leaf node
			}

			bl_count[bits]++;
			xbits = 0;
			if (n >= base) {
				xbits = extra[n - base];
			}
			f = tree[n].fc;
			opt_len += f * (bits + xbits);
			if (stree !== null) {
				static_len += f * (stree[n].dl + xbits);
			}
		}
		if (overflow === 0) {
			return;
		}

		// This happens for example on obj2 and pic of the Calgary corpus

		// Find the first bit length which could increase:
		do {
			bits = max_length - 1;
			while (bl_count[bits] === 0) {
				bits--;
			}
			bl_count[bits]--; // move one leaf down the tree
			bl_count[bits + 1] += 2; // move one overflow item as its brother
			bl_count[max_length]--;
			// The brother of the overflow item also moves one step up,
			// but this does not affect bl_count[max_length]
			overflow -= 2;
		} while (overflow > 0);

		// Now recompute all bit lengths, scanning in increasing frequency.
		// h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
		// lengths instead of fixing only the wrong ones. This idea is taken
		// from 'ar' written by Haruhiko Okumura.)
		for (bits = max_length; bits !== 0; bits--) {
			n = bl_count[bits];
			while (n !== 0) {
				m = heap[--h];
				if (m > max_code) {
					continue;
				}
				if (tree[m].dl !== bits) {
					opt_len += (bits - tree[m].dl) * tree[m].fc;
					tree[m].fc = bits;
				}
				n--;
			}
		}
	}

	  /* ==========================================================================
	   * Generate the codes for a given tree and bit counts (which need not be
	   * optimal).
	   * IN assertion: the array bl_count contains the bit length statistics for
	   * the given tree and the field len is set for all tree elements.
	   * OUT assertion: the field code is set for all tree elements of non
	   *     zero code length.
	   * @param tree- the tree to decorate
	   * @param max_code- largest code with non-zero frequency
	   */
	function gen_codes(tree, max_code) {
		var next_code = []; // new Array(MAX_BITS + 1); // next code value for each bit length
		var code = 0; // running code value
		var bits; // bit index
		var n; // code index

		// The distribution counts are first used to generate the code values
		// without bit reversal.
		for (bits = 1; bits <= MAX_BITS; bits++) {
			code = ((code + bl_count[bits - 1]) << 1);
			next_code[bits] = code;
		}

		// Check that the bit counts in bl_count are consistent. The last code
		// must be all ones.
		// Assert (code + encoder->bl_count[MAX_BITS]-1 === (1<<MAX_BITS)-1, "inconsistent bit counts");
		// Tracev((stderr,"\ngen_codes: max_code %d ", max_code));

		for (n = 0; n <= max_code; n++) {
			var len = tree[n].dl;
			if (len === 0) {
				continue;
			}
			// Now reverse the bits
			tree[n].fc = bi_reverse(next_code[len]++, len);

			// Tracec(tree !== static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", n, (isgraph(n) ? n : ' '), len, tree[n].fc, next_code[len]-1));
		}
	}

	/* ==========================================================================
	 * Construct one Huffman tree and assigns the code bit strings and lengths.
	 * Update the total bit length for the current block.
	 * IN assertion: the field freq is set for all tree elements.
	 * OUT assertions: the fields len and code are set to the optimal bit length
	 *     and corresponding code. The length opt_len is updated; static_len is
	 *     also updated if stree is not null. The field max_code is set.
	 */
	function build_tree(desc) { // the tree descriptor
		var tree = desc.dyn_tree;
		var stree = desc.static_tree;
		var elems = desc.elems;
		var n, m; // iterate over heap elements
		var max_code = -1; // largest code with non zero frequency
		var node = elems; // next internal node of the tree

		// Construct the initial heap, with least frequent element in
		// heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
		// heap[0] is not used.
		heap_len = 0;
		heap_max = HEAP_SIZE;

		for (n = 0; n < elems; n++) {
			if (tree[n].fc !== 0) {
				heap[++heap_len] = max_code = n;
				depth[n] = 0;
			} else {
				tree[n].dl = 0;
			}
		}

		// The pkzip format requires that at least one distance code exists,
		// and that at least one bit should be sent even if there is only one
		// possible code. So to avoid special checks later on we force at least
		// two codes of non zero frequency.
		while (heap_len < 2) {
			var xnew = heap[++heap_len] = (max_code < 2 ? ++max_code : 0);
			tree[xnew].fc = 1;
			depth[xnew] = 0;
			opt_len--;
			if (stree !== null) {
				static_len -= stree[xnew].dl;
			}
			// new is 0 or 1 so it does not have extra bits
		}
		desc.max_code = max_code;

		// The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
		// establish sub-heaps of increasing lengths:
		for (n = heap_len >> 1; n >= 1; n--) {
			pqdownheap(tree, n);
		}

		// Construct the Huffman tree by repeatedly combining the least two
		// frequent nodes.
		do {
			n = heap[SMALLEST];
			heap[SMALLEST] = heap[heap_len--];
			pqdownheap(tree, SMALLEST);

			m = heap[SMALLEST]; // m = node of next least frequency

			// keep the nodes sorted by frequency
			heap[--heap_max] = n;
			heap[--heap_max] = m;

			// Create a new node father of n and m
			tree[node].fc = tree[n].fc + tree[m].fc;
			//	depth[node] = (char)(MAX(depth[n], depth[m]) + 1);
			if (depth[n] > depth[m] + 1) {
				depth[node] = depth[n];
			} else {
				depth[node] = depth[m] + 1;
			}
			tree[n].dl = tree[m].dl = node;

			// and insert the new node in the heap
			heap[SMALLEST] = node++;
			pqdownheap(tree, SMALLEST);

		} while (heap_len >= 2);

		heap[--heap_max] = heap[SMALLEST];

		// At this point, the fields freq and dad are set. We can now
		// generate the bit lengths.
		gen_bitlen(desc);

		// The field len is now set, we can generate the bit codes
		gen_codes(tree, max_code);
	}

	/* ==========================================================================
	 * Scan a literal or distance tree to determine the frequencies of the codes
	 * in the bit length tree. Updates opt_len to take into account the repeat
	 * counts. (The contribution of the bit length codes will be added later
	 * during the construction of bl_tree.)
	 *
	 * @param tree- the tree to be scanned
	 * @param max_code- and its largest code of non zero frequency
	 */
	function scan_tree(tree, max_code) {
		var n, // iterates over all tree elements
			prevlen = -1, // last emitted length
			curlen, // length of current code
			nextlen = tree[0].dl, // length of next code
			count = 0, // repeat count of the current code
			max_count = 7, // max repeat count
			min_count = 4; // min repeat count

		if (nextlen === 0) {
			max_count = 138;
			min_count = 3;
		}
		tree[max_code + 1].dl = 0xffff; // guard

		for (n = 0; n <= max_code; n++) {
			curlen = nextlen;
			nextlen = tree[n + 1].dl;
			if (++count < max_count && curlen === nextlen) {
				continue;
			} else if (count < min_count) {
				bl_tree[curlen].fc += count;
			} else if (curlen !== 0) {
				if (curlen !== prevlen) {
					bl_tree[curlen].fc++;
				}
				bl_tree[REP_3_6].fc++;
			} else if (count <= 10) {
				bl_tree[REPZ_3_10].fc++;
			} else {
				bl_tree[REPZ_11_138].fc++;
			}
			count = 0; prevlen = curlen;
			if (nextlen === 0) {
				max_count = 138;
				min_count = 3;
			} else if (curlen === nextlen) {
				max_count = 6;
				min_count = 3;
			} else {
				max_count = 7;
				min_count = 4;
			}
		}
	}

	/* ==========================================================================
	 * Send a literal or distance tree in compressed form, using the codes in
	 * bl_tree.
	 *
	 * @param tree- the tree to be scanned
	 * @param max_code- and its largest code of non zero frequency
	 */
	function send_tree(tree, max_code) {
		var n; // iterates over all tree elements
		var prevlen = -1; // last emitted length
		var curlen; // length of current code
		var nextlen = tree[0].dl; // length of next code
		var count = 0; // repeat count of the current code
		var max_count = 7; // max repeat count
		var min_count = 4; // min repeat count

		// tree[max_code+1].dl = -1; */  /* guard already set */
		if (nextlen === 0) {
			max_count = 138;
			min_count = 3;
		}

		for (n = 0; n <= max_code; n++) {
			curlen = nextlen;
			nextlen = tree[n + 1].dl;
			if (++count < max_count && curlen === nextlen) {
				continue;
			} else if (count < min_count) {
				do {
					SEND_CODE(curlen, bl_tree);
				} while (--count !== 0);
			} else if (curlen !== 0) {
				if (curlen !== prevlen) {
					SEND_CODE(curlen, bl_tree);
					count--;
				}
			// Assert(count >= 3 && count <= 6, " 3_6?");
				SEND_CODE(REP_3_6, bl_tree);
				send_bits(count - 3, 2);
			} else if (count <= 10) {
				SEND_CODE(REPZ_3_10, bl_tree);
				send_bits(count - 3, 3);
			} else {
				SEND_CODE(REPZ_11_138, bl_tree);
				send_bits(count - 11, 7);
			}
			count = 0;
			prevlen = curlen;
			if (nextlen === 0) {
				max_count = 138;
				min_count = 3;
			} else if (curlen === nextlen) {
				max_count = 6;
				min_count = 3;
			} else {
				max_count = 7;
				min_count = 4;
			}
		}
	}

	/* ==========================================================================
	 * Construct the Huffman tree for the bit lengths and return the index in
	 * bl_order of the last bit length code to send.
	 */
	function build_bl_tree() {
		var max_blindex; // index of last bit length code of non zero freq

		// Determine the bit length frequencies for literal and distance trees
		scan_tree(dyn_ltree, l_desc.max_code);
		scan_tree(dyn_dtree, d_desc.max_code);

		// Build the bit length tree:
		build_tree(bl_desc);
		// opt_len now includes the length of the tree representations, except
		// the lengths of the bit lengths codes and the 5+5+4 bits for the counts.

		// Determine the number of bit length codes to send. The pkzip format
		// requires that at least 4 bit length codes be sent. (appnote.txt says
		// 3 but the actual value used is 4.)
		for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
			if (bl_tree[bl_order[max_blindex]].dl !== 0) {
				break;
			}
		}
		// Update opt_len to include the bit length tree and counts */
		opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
		// Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
		// encoder->opt_len, encoder->static_len));

		return max_blindex;
	}

	/* ==========================================================================
	 * Send the header for a block using dynamic Huffman trees: the counts, the
	 * lengths of the bit length codes, the literal tree and the distance tree.
	 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
	 */
	function send_all_trees(lcodes, dcodes, blcodes) { // number of codes for each tree
		var rank; // index in bl_order

		// Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
		// Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, "too many codes");
		// Tracev((stderr, "\nbl counts: "));
		send_bits(lcodes - 257, 5); // not +255 as stated in appnote.txt
		send_bits(dcodes - 1,   5);
		send_bits(blcodes - 4,  4); // not -3 as stated in appnote.txt
		for (rank = 0; rank < blcodes; rank++) {
			// Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
			send_bits(bl_tree[bl_order[rank]].dl, 3);
		}

		// send the literal tree
		send_tree(dyn_ltree, lcodes - 1);

		// send the distance tree
		send_tree(dyn_dtree, dcodes - 1);
	}

	/* ==========================================================================
	 * Determine the best encoding for the current block: dynamic trees, static
	 * trees or store, and output the encoded block to the zip file.
	 */
	function flush_block(eof) { // true if this is the last block for a file
		var opt_lenb, static_lenb, // opt_len and static_len in bytes
			max_blindex, // index of last bit length code of non zero freq
			stored_len, // length of input block
			i;

		stored_len = strstart - block_start;
		flag_buf[last_flags] = flags; // Save the flags for the last 8 items

		// Construct the literal and distance trees
		build_tree(l_desc);
		// Tracev((stderr, "\nlit data: dyn %ld, stat %ld",
		// encoder->opt_len, encoder->static_len));

		build_tree(d_desc);
		// Tracev((stderr, "\ndist data: dyn %ld, stat %ld",
		// encoder->opt_len, encoder->static_len));
		// At this point, opt_len and static_len are the total bit lengths of
		// the compressed block data, excluding the tree representations.

		// Build the bit length tree for the above two trees, and get the index
		// in bl_order of the last bit length code to send.
		max_blindex = build_bl_tree();

	 // Determine the best encoding. Compute first the block length in bytes
		opt_lenb = (opt_len + 3 + 7) >> 3;
		static_lenb = (static_len + 3 + 7) >> 3;

	//  Trace((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ", opt_lenb, encoder->opt_len, static_lenb, encoder->static_len, stored_len, encoder->last_lit, encoder->last_dist));

		if (static_lenb <= opt_lenb) {
			opt_lenb = static_lenb;
		}
		if (stored_len + 4 <= opt_lenb && block_start >= 0) { // 4: two words for the lengths
			// The test buf !== NULL is only necessary if LIT_BUFSIZE > WSIZE.
			// Otherwise we can't have processed more than WSIZE input bytes since
			// the last block flush, because compression would have been
			// successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
			// transform a block into a stored block.
			send_bits((STORED_BLOCK << 1) + eof, 3);  /* send block type */
			bi_windup();         /* align on byte boundary */
			put_short(stored_len);
			put_short(~stored_len);

			// copy block
			/*
				p = &window[block_start];
				for (i = 0; i < stored_len; i++) {
					put_byte(p[i]);
				}
			*/
			for (i = 0; i < stored_len; i++) {
				put_byte(window[block_start + i]);
			}
		} else if (static_lenb === opt_lenb) {
			send_bits((STATIC_TREES << 1) + eof, 3);
			compress_block(static_ltree, static_dtree);
		} else {
			send_bits((DYN_TREES << 1) + eof, 3);
			send_all_trees(l_desc.max_code + 1, d_desc.max_code + 1, max_blindex + 1);
			compress_block(dyn_ltree, dyn_dtree);
		}

		init_block();

		if (eof !== 0) {
			bi_windup();
		}
	}

	/* ==========================================================================
	 * Save the match info and tally the frequency counts. Return true if
	 * the current block must be flushed.
	 *
	 * @param dist- distance of matched string
	 * @param lc- (match length - MIN_MATCH) or unmatched char (if dist === 0)
	 */
	function ct_tally(dist, lc) {
		l_buf[last_lit++] = lc;
		if (dist === 0) {
			// lc is the unmatched char
			dyn_ltree[lc].fc++;
		} else {
			// Here, lc is the match length - MIN_MATCH
			dist--; // dist = match distance - 1
			// Assert((ush)dist < (ush)MAX_DIST && (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && (ush)D_CODE(dist) < (ush)D_CODES,  "ct_tally: bad match");

			dyn_ltree[length_code[lc] + LITERALS + 1].fc++;
			dyn_dtree[D_CODE(dist)].fc++;

			d_buf[last_dist++] = dist;
			flags |= flag_bit;
		}
		flag_bit <<= 1;

		// Output the flags if they fill a byte
		if ((last_lit & 7) === 0) {
			flag_buf[last_flags++] = flags;
			flags = 0;
			flag_bit = 1;
		}
		// Try to guess if it is profitable to stop the current block here
		if (compr_level > 2 && (last_lit & 0xfff) === 0) {
			// Compute an upper bound for the compressed length
			var out_length = last_lit * 8;
			var in_length = strstart - block_start;
			var dcode;

			for (dcode = 0; dcode < D_CODES; dcode++) {
				out_length += dyn_dtree[dcode].fc * (5 + extra_dbits[dcode]);
			}
			out_length >>= 3;
			// Trace((stderr,"\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ", encoder->last_lit, encoder->last_dist, in_length, out_length, 100L - out_length*100L/in_length));
			if (last_dist < parseInt(last_lit / 2, 10) && out_length < parseInt(in_length / 2, 10)) {
				return true;
			}
		}
		return (last_lit === LIT_BUFSIZE - 1 || last_dist === DIST_BUFSIZE);
		// We avoid equality with LIT_BUFSIZE because of wraparound at 64K
		// on 16 bit machines and because stored blocks are restricted to
		// 64K-1 bytes.
	}

	  /* ==========================================================================
	   * Send the block data compressed using the given Huffman trees
	   *
	   * @param ltree- literal tree
	   * @param dtree- distance tree
	   */
	function compress_block(ltree, dtree) {
		var dist; // distance of matched string
		var lc; // match length or unmatched char (if dist === 0)
		var lx = 0; // running index in l_buf
		var dx = 0; // running index in d_buf
		var fx = 0; // running index in flag_buf
		var flag = 0; // current flags
		var code; // the code to send
		var extra; // number of extra bits to send

		if (last_lit !== 0) {
			do {
				if ((lx & 7) === 0) {
					flag = flag_buf[fx++];
				}
				lc = l_buf[lx++] & 0xff;
				if ((flag & 1) === 0) {
					SEND_CODE(lc, ltree); /* send a literal byte */
					//	Tracecv(isgraph(lc), (stderr," '%c' ", lc));
				} else {
					// Here, lc is the match length - MIN_MATCH
					code = length_code[lc];
					SEND_CODE(code + LITERALS + 1, ltree); // send the length code
					extra = extra_lbits[code];
					if (extra !== 0) {
						lc -= base_length[code];
						send_bits(lc, extra); // send the extra length bits
					}
					dist = d_buf[dx++];
					// Here, dist is the match distance - 1
					code = D_CODE(dist);
					//	Assert (code < D_CODES, "bad d_code");

					SEND_CODE(code, dtree); // send the distance code
					extra = extra_dbits[code];
					if (extra !== 0) {
						dist -= base_dist[code];
						send_bits(dist, extra); // send the extra distance bits
					}
				} // literal or match pair ?
				flag >>= 1;
			} while (lx < last_lit);
		}

		SEND_CODE(END_BLOCK, ltree);
	}

	/* ==========================================================================
	 * Send a value on a given number of bits.
	 * IN assertion: length <= 16 and value fits in length bits.
	 *
	 * @param value- value to send
	 * @param length- number of bits
	 */
	var Buf_size = 16; // bit size of bi_buf
	function send_bits(value, length) {
		// If not enough room in bi_buf, use (valid) bits from bi_buf and
		// (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
		// unused bits in value.
		if (bi_valid > Buf_size - length) {
			bi_buf |= (value << bi_valid);
			put_short(bi_buf);
			bi_buf = (value >> (Buf_size - bi_valid));
			bi_valid += length - Buf_size;
		} else {
			bi_buf |= value << bi_valid;
			bi_valid += length;
		}
	}

	/* ==========================================================================
	 * Reverse the first len bits of a code, using straightforward code (a faster
	 * method would use a table)
	 * IN assertion: 1 <= len <= 15
	 *
	 * @param code- the value to invert
	 * @param len- its bit length
	 */
	function bi_reverse(code, len) {
		var res = 0;
		do {
			res |= code & 1;
			code >>= 1;
			res <<= 1;
		} while (--len > 0);
		return res >> 1;
	}

	/* ==========================================================================
	 * Write out any remaining bits in an incomplete byte.
	 */
	function bi_windup() {
		if (bi_valid > 8) {
			put_short(bi_buf);
		} else if (bi_valid > 0) {
			put_byte(bi_buf);
		}
		bi_buf = 0;
		bi_valid = 0;
	}

	function qoutbuf() {
		var q, i;
		if (outcnt !== 0) {
			q = new_queue();
			if (qhead === null) {
				qhead = qtail = q;
			} else {
				qtail = qtail.next = q;
			}
			q.len = outcnt - outoff;
			// System.arraycopy(outbuf, outoff, q.ptr, 0, q.len);
			for (i = 0; i < q.len; i++) {
				q.ptr[i] = outbuf[outoff + i];
			}
			outcnt = outoff = 0;
		}
	}

	function deflate(arr, level) {
		var i, j, buff;

		deflate_data = arr;
		deflate_pos = 0;
		if (typeof level === "undefined") {
			level = DEFAULT_LEVEL;
		}
		deflate_start(level);

		buff = [];

		do {
			i = deflate_internal(buff, buff.length, 1024);
		} while (i > 0);

		deflate_data = null; // G.C.
		return buff;
	}

	module.exports = deflate;
	module.exports.DEFAULT_LEVEL = DEFAULT_LEVEL;
}());