Geometry.js 14.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
/* Copyright (c) 2006-2011 by OpenLayers Contributors (see authors.txt for 
 * full list of contributors). Published under the Clear BSD license.  
 * See http://svn.openlayers.org/trunk/openlayers/license.txt for the
 * full text of the license. */
 
/**
 * @requires OpenLayers/BaseTypes/Class.js
 * @requires OpenLayers/Format/WKT.js
 * @requires OpenLayers/Feature/Vector.js
 */

/**
 * Class: OpenLayers.Geometry
 * A Geometry is a description of a geographic object.  Create an instance of
 * this class with the <OpenLayers.Geometry> constructor.  This is a base class,
 * typical geometry types are described by subclasses of this class.
 */
OpenLayers.Geometry = OpenLayers.Class({

    /**
     * Property: id
     * {String} A unique identifier for this geometry.
     */
    id: null,

    /**
     * Property: parent
     * {<OpenLayers.Geometry>}This is set when a Geometry is added as component
     * of another geometry
     */
    parent: null,

    /**
     * Property: bounds 
     * {<OpenLayers.Bounds>} The bounds of this geometry
     */
    bounds: null,

    /**
     * Constructor: OpenLayers.Geometry
     * Creates a geometry object.  
     */
    initialize: function() {
        this.id = OpenLayers.Util.createUniqueID(this.CLASS_NAME+ "_");
    },
    
    /**
     * Method: destroy
     * Destroy this geometry.
     */
    destroy: function() {
        this.id = null;
        this.bounds = null;
    },
    
    /**
     * APIMethod: clone
     * Create a clone of this geometry.  Does not set any non-standard
     *     properties of the cloned geometry.
     * 
     * Returns:
     * {<OpenLayers.Geometry>} An exact clone of this geometry.
     */
    clone: function() {
        return new OpenLayers.Geometry();
    },
    
    /**
     * Set the bounds for this Geometry.
     * 
     * Parameters:
     * object - {<OpenLayers.Bounds>} 
     */
    setBounds: function(bounds) {
        if (bounds) {
            this.bounds = bounds.clone();
        }
    },
    
    /**
     * Method: clearBounds
     * Nullify this components bounds and that of its parent as well.
     */
    clearBounds: function() {
        this.bounds = null;
        if (this.parent) {
            this.parent.clearBounds();
        }    
    },
    
    /**
     * Method: extendBounds
     * Extend the existing bounds to include the new bounds. 
     * If geometry's bounds is not yet set, then set a new Bounds.
     * 
     * Parameters:
     * newBounds - {<OpenLayers.Bounds>} 
     */
    extendBounds: function(newBounds){
        var bounds = this.getBounds();
        if (!bounds) {
            this.setBounds(newBounds);
        } else {
            this.bounds.extend(newBounds);
        }
    },
    
    /**
     * APIMethod: getBounds
     * Get the bounds for this Geometry. If bounds is not set, it 
     * is calculated again, this makes queries faster.
     * 
     * Returns:
     * {<OpenLayers.Bounds>}
     */
    getBounds: function() {
        if (this.bounds == null) {
            this.calculateBounds();
        }
        return this.bounds;
    },
    
    /** 
     * APIMethod: calculateBounds
     * Recalculate the bounds for the geometry. 
     */
    calculateBounds: function() {
        //
        // This should be overridden by subclasses.
        //
    },
    
    /**
     * APIMethod: distanceTo
     * Calculate the closest distance between two geometries (on the x-y plane).
     *
     * Parameters:
     * geometry - {<OpenLayers.Geometry>} The target geometry.
     * options - {Object} Optional properties for configuring the distance
     *     calculation.
     *
     * Valid options depend on the specific geometry type.
     * 
     * Returns:
     * {Number | Object} The distance between this geometry and the target.
     *     If details is true, the return will be an object with distance,
     *     x0, y0, x1, and x2 properties.  The x0 and y0 properties represent
     *     the coordinates of the closest point on this geometry. The x1 and y1
     *     properties represent the coordinates of the closest point on the
     *     target geometry.
     */
    distanceTo: function(geometry, options) {
    },
    
    /**
     * APIMethod: getVertices
     * Return a list of all points in this geometry.
     *
     * Parameters:
     * nodes - {Boolean} For lines, only return vertices that are
     *     endpoints.  If false, for lines, only vertices that are not
     *     endpoints will be returned.  If not provided, all vertices will
     *     be returned.
     *
     * Returns:
     * {Array} A list of all vertices in the geometry.
     */
    getVertices: function(nodes) {
    },

    /**
     * Method: atPoint
     * Note - This is only an approximation based on the bounds of the 
     * geometry.
     * 
     * Parameters:
     * lonlat - {<OpenLayers.LonLat>} 
     * toleranceLon - {float} Optional tolerance in Geometric Coords
     * toleranceLat - {float} Optional tolerance in Geographic Coords
     * 
     * Returns:
     * {Boolean} Whether or not the geometry is at the specified location
     */
    atPoint: function(lonlat, toleranceLon, toleranceLat) {
        var atPoint = false;
        var bounds = this.getBounds();
        if ((bounds != null) && (lonlat != null)) {

            var dX = (toleranceLon != null) ? toleranceLon : 0;
            var dY = (toleranceLat != null) ? toleranceLat : 0;
    
            var toleranceBounds = 
                new OpenLayers.Bounds(this.bounds.left - dX,
                                      this.bounds.bottom - dY,
                                      this.bounds.right + dX,
                                      this.bounds.top + dY);

            atPoint = toleranceBounds.containsLonLat(lonlat);
        }
        return atPoint;
    },
    
    /**
     * Method: getLength
     * Calculate the length of this geometry. This method is defined in
     * subclasses.
     * 
     * Returns:
     * {Float} The length of the collection by summing its parts
     */
    getLength: function() {
        //to be overridden by geometries that actually have a length
        //
        return 0.0;
    },

    /**
     * Method: getArea
     * Calculate the area of this geometry. This method is defined in subclasses.
     * 
     * Returns:
     * {Float} The area of the collection by summing its parts
     */
    getArea: function() {
        //to be overridden by geometries that actually have an area
        //
        return 0.0;
    },
    
    /**
     * APIMethod: getCentroid
     * Calculate the centroid of this geometry. This method is defined in subclasses.
     *
     * Returns:
     * {<OpenLayers.Geometry.Point>} The centroid of the collection
     */
    getCentroid: function() {
        return null;
    },

    /**
     * Method: toString
     * Returns the Well-Known Text representation of a geometry
     *
     * Returns:
     * {String} Well-Known Text
     */
    toString: function() {
        return OpenLayers.Format.WKT.prototype.write(
            new OpenLayers.Feature.Vector(this)
        );
    },

    CLASS_NAME: "OpenLayers.Geometry"
});

/**
 * Function: OpenLayers.Geometry.fromWKT
 * Generate a geometry given a Well-Known Text string.
 *
 * Parameters:
 * wkt - {String} A string representing the geometry in Well-Known Text.
 *
 * Returns:
 * {<OpenLayers.Geometry>} A geometry of the appropriate class.
 */
OpenLayers.Geometry.fromWKT = function(wkt) {
    var format = arguments.callee.format;
    if(!format) {
        format = new OpenLayers.Format.WKT();
        arguments.callee.format = format;
    }
    var geom;
    var result = format.read(wkt);
    if(result instanceof OpenLayers.Feature.Vector) {
        geom = result.geometry;
    } else if(OpenLayers.Util.isArray(result)) {
        var len = result.length;
        var components = new Array(len);
        for(var i=0; i<len; ++i) {
            components[i] = result[i].geometry;
        }
        geom = new OpenLayers.Geometry.Collection(components);
    }
    return geom;
};
    
/**
 * Method: OpenLayers.Geometry.segmentsIntersect
 * Determine whether two line segments intersect.  Optionally calculates
 *     and returns the intersection point.  This function is optimized for
 *     cases where seg1.x2 >= seg2.x1 || seg2.x2 >= seg1.x1.  In those
 *     obvious cases where there is no intersection, the function should
 *     not be called.
 *
 * Parameters:
 * seg1 - {Object} Object representing a segment with properties x1, y1, x2,
 *     and y2.  The start point is represented by x1 and y1.  The end point
 *     is represented by x2 and y2.  Start and end are ordered so that x1 < x2.
 * seg2 - {Object} Object representing a segment with properties x1, y1, x2,
 *     and y2.  The start point is represented by x1 and y1.  The end point
 *     is represented by x2 and y2.  Start and end are ordered so that x1 < x2.
 * options - {Object} Optional properties for calculating the intersection.
 *
 * Valid options:
 * point - {Boolean} Return the intersection point.  If false, the actual
 *     intersection point will not be calculated.  If true and the segments
 *     intersect, the intersection point will be returned.  If true and
 *     the segments do not intersect, false will be returned.  If true and
 *     the segments are coincident, true will be returned.
 * tolerance - {Number} If a non-null value is provided, if the segments are
 *     within the tolerance distance, this will be considered an intersection.
 *     In addition, if the point option is true and the calculated intersection
 *     is within the tolerance distance of an end point, the endpoint will be
 *     returned instead of the calculated intersection.  Further, if the
 *     intersection is within the tolerance of endpoints on both segments, or
 *     if two segment endpoints are within the tolerance distance of eachother
 *     (but no intersection is otherwise calculated), an endpoint on the
 *     first segment provided will be returned.
 *
 * Returns:
 * {Boolean | <OpenLayers.Geometry.Point>}  The two segments intersect.
 *     If the point argument is true, the return will be the intersection
 *     point or false if none exists.  If point is true and the segments
 *     are coincident, return will be true (and the instersection is equal
 *     to the shorter segment).
 */
OpenLayers.Geometry.segmentsIntersect = function(seg1, seg2, options) {
    var point = options && options.point;
    var tolerance = options && options.tolerance;
    var intersection = false;
    var x11_21 = seg1.x1 - seg2.x1;
    var y11_21 = seg1.y1 - seg2.y1;
    var x12_11 = seg1.x2 - seg1.x1;
    var y12_11 = seg1.y2 - seg1.y1;
    var y22_21 = seg2.y2 - seg2.y1;
    var x22_21 = seg2.x2 - seg2.x1;
    var d = (y22_21 * x12_11) - (x22_21 * y12_11);
    var n1 = (x22_21 * y11_21) - (y22_21 * x11_21);
    var n2 = (x12_11 * y11_21) - (y12_11 * x11_21);
    if(d == 0) {
        // parallel
        if(n1 == 0 && n2 == 0) {
            // coincident
            intersection = true;
        }
    } else {
        var along1 = n1 / d;
        var along2 = n2 / d;
        if(along1 >= 0 && along1 <= 1 && along2 >=0 && along2 <= 1) {
            // intersect
            if(!point) {
                intersection = true;
            } else {
                // calculate the intersection point
                var x = seg1.x1 + (along1 * x12_11);
                var y = seg1.y1 + (along1 * y12_11);
                intersection = new OpenLayers.Geometry.Point(x, y);
            }
        }
    }
    if(tolerance) {
        var dist;
        if(intersection) {
            if(point) {
                var segs = [seg1, seg2];
                var seg, x, y;
                // check segment endpoints for proximity to intersection
                // set intersection to first endpoint within the tolerance
                outer: for(var i=0; i<2; ++i) {
                    seg = segs[i];
                    for(var j=1; j<3; ++j) {
                        x = seg["x" + j];
                        y = seg["y" + j];
                        dist = Math.sqrt(
                            Math.pow(x - intersection.x, 2) +
                            Math.pow(y - intersection.y, 2)
                        );
                        if(dist < tolerance) {
                            intersection.x = x;
                            intersection.y = y;
                            break outer;
                        }
                    }
                }
                
            }
        } else {
            // no calculated intersection, but segments could be within
            // the tolerance of one another
            var segs = [seg1, seg2];
            var source, target, x, y, p, result;
            // check segment endpoints for proximity to intersection
            // set intersection to first endpoint within the tolerance
            outer: for(var i=0; i<2; ++i) {
                source = segs[i];
                target = segs[(i+1)%2];
                for(var j=1; j<3; ++j) {
                    p = {x: source["x"+j], y: source["y"+j]};
                    result = OpenLayers.Geometry.distanceToSegment(p, target);
                    if(result.distance < tolerance) {
                        if(point) {
                            intersection = new OpenLayers.Geometry.Point(p.x, p.y);
                        } else {
                            intersection = true;
                        }
                        break outer;
                    }
                }
            }
        }
    }
    return intersection;
};

/**
 * Function: OpenLayers.Geometry.distanceToSegment
 *
 * Parameters:
 * point - {Object} An object with x and y properties representing the
 *     point coordinates.
 * segment - {Object} An object with x1, y1, x2, and y2 properties
 *     representing endpoint coordinates.
 *
 * Returns:
 * {Object} An object with distance, x, and y properties.  The distance
 *     will be the shortest distance between the input point and segment.
 *     The x and y properties represent the coordinates along the segment
 *     where the shortest distance meets the segment.
 */
OpenLayers.Geometry.distanceToSegment = function(point, segment) {
    var x0 = point.x;
    var y0 = point.y;
    var x1 = segment.x1;
    var y1 = segment.y1;
    var x2 = segment.x2;
    var y2 = segment.y2;
    var dx = x2 - x1;
    var dy = y2 - y1;
    var along = ((dx * (x0 - x1)) + (dy * (y0 - y1))) /
                (Math.pow(dx, 2) + Math.pow(dy, 2));
    var x, y;
    if(along <= 0.0) {
        x = x1;
        y = y1;
    } else if(along >= 1.0) {
        x = x2;
        y = y2;
    } else {
        x = x1 + along * dx;
        y = y1 + along * dy;
    }
    return {
        distance: Math.sqrt(Math.pow(x - x0, 2) + Math.pow(y - y0, 2)),
        x: x, y: y
    };
};