LineString.js 25.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
/* Copyright (c) 2006-2011 by OpenLayers Contributors (see authors.txt for 
 * full list of contributors). Published under the Clear BSD license.  
 * See http://svn.openlayers.org/trunk/openlayers/license.txt for the
 * full text of the license. */

/**
 * @requires OpenLayers/Geometry/Curve.js
 */

/**
 * Class: OpenLayers.Geometry.LineString
 * A LineString is a Curve which, once two points have been added to it, can 
 * never be less than two points long.
 * 
 * Inherits from:
 *  - <OpenLayers.Geometry.Curve>
 */
OpenLayers.Geometry.LineString = OpenLayers.Class(OpenLayers.Geometry.Curve, {

    /**
     * Constructor: OpenLayers.Geometry.LineString
     * Create a new LineString geometry
     *
     * Parameters:
     * points - {Array(<OpenLayers.Geometry.Point>)} An array of points used to
     *          generate the linestring
     *
     */
    initialize: function(points) {
        OpenLayers.Geometry.Curve.prototype.initialize.apply(this, arguments);        
    },

    /**
     * APIMethod: removeComponent
     * Only allows removal of a point if there are three or more points in 
     * the linestring. (otherwise the result would be just a single point)
     *
     * Parameters: 
     * point - {<OpenLayers.Geometry.Point>} The point to be removed
     *
     * Returns: 
     * {Boolean} The component was removed.
     */
    removeComponent: function(point) {
        var removed = this.components && (this.components.length > 2);
        if (removed) {
            OpenLayers.Geometry.Collection.prototype.removeComponent.apply(this, 
                                                                  arguments);
        }
        return removed;
    },
    
    /**
     * APIMethod: intersects
     * Test for instersection between two geometries.  This is a cheapo
     *     implementation of the Bently-Ottmann algorigithm.  It doesn't
     *     really keep track of a sweep line data structure.  It is closer
     *     to the brute force method, except that segments are sorted and
     *     potential intersections are only calculated when bounding boxes
     *     intersect.
     *
     * Parameters:
     * geometry - {<OpenLayers.Geometry>}
     *
     * Returns:
     * {Boolean} The input geometry intersects this geometry.
     */
    intersects: function(geometry) {
        var intersect = false;
        var type = geometry.CLASS_NAME;
        if(type == "OpenLayers.Geometry.LineString" ||
           type == "OpenLayers.Geometry.LinearRing" ||
           type == "OpenLayers.Geometry.Point") {
            var segs1 = this.getSortedSegments();
            var segs2;
            if(type == "OpenLayers.Geometry.Point") {
                segs2 = [{
                    x1: geometry.x, y1: geometry.y,
                    x2: geometry.x, y2: geometry.y
                }];
            } else {
                segs2 = geometry.getSortedSegments();
            }
            var seg1, seg1x1, seg1x2, seg1y1, seg1y2,
                seg2, seg2y1, seg2y2;
            // sweep right
            outer: for(var i=0, len=segs1.length; i<len; ++i) {
                seg1 = segs1[i];
                seg1x1 = seg1.x1;
                seg1x2 = seg1.x2;
                seg1y1 = seg1.y1;
                seg1y2 = seg1.y2;
                inner: for(var j=0, jlen=segs2.length; j<jlen; ++j) {
                    seg2 = segs2[j];
                    if(seg2.x1 > seg1x2) {
                        // seg1 still left of seg2
                        break;
                    }
                    if(seg2.x2 < seg1x1) {
                        // seg2 still left of seg1
                        continue;
                    }
                    seg2y1 = seg2.y1;
                    seg2y2 = seg2.y2;
                    if(Math.min(seg2y1, seg2y2) > Math.max(seg1y1, seg1y2)) {
                        // seg2 above seg1
                        continue;
                    }
                    if(Math.max(seg2y1, seg2y2) < Math.min(seg1y1, seg1y2)) {
                        // seg2 below seg1
                        continue;
                    }
                    if(OpenLayers.Geometry.segmentsIntersect(seg1, seg2)) {
                        intersect = true;
                        break outer;
                    }
                }
            }
        } else {
            intersect = geometry.intersects(this);
        }
        return intersect;
    },
    
    /**
     * Method: getSortedSegments
     *
     * Returns:
     * {Array} An array of segment objects.  Segment objects have properties
     *     x1, y1, x2, and y2.  The start point is represented by x1 and y1.
     *     The end point is represented by x2 and y2.  Start and end are
     *     ordered so that x1 < x2.
     */
    getSortedSegments: function() {
        var numSeg = this.components.length - 1;
        var segments = new Array(numSeg), point1, point2;
        for(var i=0; i<numSeg; ++i) {
            point1 = this.components[i];
            point2 = this.components[i + 1];
            if(point1.x < point2.x) {
                segments[i] = {
                    x1: point1.x,
                    y1: point1.y,
                    x2: point2.x,
                    y2: point2.y
                };
            } else {
                segments[i] = {
                    x1: point2.x,
                    y1: point2.y,
                    x2: point1.x,
                    y2: point1.y
                };
            }
        }
        // more efficient to define this somewhere static
        function byX1(seg1, seg2) {
            return seg1.x1 - seg2.x1;
        }
        return segments.sort(byX1);
    },
    
    /**
     * Method: splitWithSegment
     * Split this geometry with the given segment.
     *
     * Parameters:
     * seg - {Object} An object with x1, y1, x2, and y2 properties referencing
     *     segment endpoint coordinates.
     * options - {Object} Properties of this object will be used to determine
     *     how the split is conducted.
     *
     * Valid options:
     * edge - {Boolean} Allow splitting when only edges intersect.  Default is
     *     true.  If false, a vertex on the source segment must be within the
     *     tolerance distance of the intersection to be considered a split.
     * tolerance - {Number} If a non-null value is provided, intersections
     *     within the tolerance distance of one of the source segment's
     *     endpoints will be assumed to occur at the endpoint.
     *
     * Returns:
     * {Object} An object with *lines* and *points* properties.  If the given
     *     segment intersects this linestring, the lines array will reference
     *     geometries that result from the split.  The points array will contain
     *     all intersection points.  Intersection points are sorted along the
     *     segment (in order from x1,y1 to x2,y2).
     */
    splitWithSegment: function(seg, options) {
        var edge = !(options && options.edge === false);
        var tolerance = options && options.tolerance;
        var lines = [];
        var verts = this.getVertices();
        var points = [];
        var intersections = [];
        var split = false;
        var vert1, vert2, point;
        var node, vertex, target;
        var interOptions = {point: true, tolerance: tolerance};
        var result = null;
        for(var i=0, stop=verts.length-2; i<=stop; ++i) {
            vert1 = verts[i];
            points.push(vert1.clone());
            vert2 = verts[i+1];
            target = {x1: vert1.x, y1: vert1.y, x2: vert2.x, y2: vert2.y};
            point = OpenLayers.Geometry.segmentsIntersect(
                seg, target, interOptions
            );
            if(point instanceof OpenLayers.Geometry.Point) {
                if((point.x === seg.x1 && point.y === seg.y1) ||
                   (point.x === seg.x2 && point.y === seg.y2) ||
                   point.equals(vert1) || point.equals(vert2)) {
                    vertex = true;
                } else {
                    vertex = false;
                }
                if(vertex || edge) {
                    // push intersections different than the previous
                    if(!point.equals(intersections[intersections.length-1])) {
                        intersections.push(point.clone());
                    }
                    if(i === 0) {
                        if(point.equals(vert1)) {
                            continue;
                        }
                    }
                    if(point.equals(vert2)) {
                        continue;
                    }
                    split = true;
                    if(!point.equals(vert1)) {
                        points.push(point);
                    }
                    lines.push(new OpenLayers.Geometry.LineString(points));
                    points = [point.clone()];
                }
            }
        }
        if(split) {
            points.push(vert2.clone());
            lines.push(new OpenLayers.Geometry.LineString(points));
        }
        if(intersections.length > 0) {
            // sort intersections along segment
            var xDir = seg.x1 < seg.x2 ? 1 : -1;
            var yDir = seg.y1 < seg.y2 ? 1 : -1;
            result = {
                lines: lines,
                points: intersections.sort(function(p1, p2) {
                    return (xDir * p1.x - xDir * p2.x) || (yDir * p1.y - yDir * p2.y);
                })
            };
        }
        return result;
    },

    /**
     * Method: split
     * Use this geometry (the source) to attempt to split a target geometry.
     * 
     * Parameters:
     * target - {<OpenLayers.Geometry>} The target geometry.
     * options - {Object} Properties of this object will be used to determine
     *     how the split is conducted.
     *
     * Valid options:
     * mutual - {Boolean} Split the source geometry in addition to the target
     *     geometry.  Default is false.
     * edge - {Boolean} Allow splitting when only edges intersect.  Default is
     *     true.  If false, a vertex on the source must be within the tolerance
     *     distance of the intersection to be considered a split.
     * tolerance - {Number} If a non-null value is provided, intersections
     *     within the tolerance distance of an existing vertex on the source
     *     will be assumed to occur at the vertex.
     * 
     * Returns:
     * {Array} A list of geometries (of this same type as the target) that
     *     result from splitting the target with the source geometry.  The
     *     source and target geometry will remain unmodified.  If no split
     *     results, null will be returned.  If mutual is true and a split
     *     results, return will be an array of two arrays - the first will be
     *     all geometries that result from splitting the source geometry and
     *     the second will be all geometries that result from splitting the
     *     target geometry.
     */
    split: function(target, options) {
        var results = null;
        var mutual = options && options.mutual;
        var sourceSplit, targetSplit, sourceParts, targetParts;
        if(target instanceof OpenLayers.Geometry.LineString) {
            var verts = this.getVertices();
            var vert1, vert2, seg, splits, lines, point;
            var points = [];
            sourceParts = [];
            for(var i=0, stop=verts.length-2; i<=stop; ++i) {
                vert1 = verts[i];
                vert2 = verts[i+1];
                seg = {
                    x1: vert1.x, y1: vert1.y,
                    x2: vert2.x, y2: vert2.y
                };
                targetParts = targetParts || [target];
                if(mutual) {
                    points.push(vert1.clone());
                }
                for(var j=0; j<targetParts.length; ++j) {
                    splits = targetParts[j].splitWithSegment(seg, options);
                    if(splits) {
                        // splice in new features
                        lines = splits.lines;
                        if(lines.length > 0) {
                            lines.unshift(j, 1);
                            Array.prototype.splice.apply(targetParts, lines);
                            j += lines.length - 2;
                        }
                        if(mutual) {
                            for(var k=0, len=splits.points.length; k<len; ++k) {
                                point = splits.points[k];
                                if(!point.equals(vert1)) {
                                    points.push(point);
                                    sourceParts.push(new OpenLayers.Geometry.LineString(points));
                                    if(point.equals(vert2)) {
                                        points = [];
                                    } else {
                                        points = [point.clone()];
                                    }
                                }
                            }
                        }
                    }
                }
            }
            if(mutual && sourceParts.length > 0 && points.length > 0) {
                points.push(vert2.clone());
                sourceParts.push(new OpenLayers.Geometry.LineString(points));
            }
        } else {
            results = target.splitWith(this, options);
        }
        if(targetParts && targetParts.length > 1) {
            targetSplit = true;
        } else {
            targetParts = [];
        }
        if(sourceParts && sourceParts.length > 1) {
            sourceSplit = true;
        } else {
            sourceParts = [];
        }
        if(targetSplit || sourceSplit) {
            if(mutual) {
                results = [sourceParts, targetParts];
            } else {
                results = targetParts;
            }
        }
        return results;
    },

    /**
     * Method: splitWith
     * Split this geometry (the target) with the given geometry (the source).
     *
     * Parameters:
     * geometry - {<OpenLayers.Geometry>} A geometry used to split this
     *     geometry (the source).
     * options - {Object} Properties of this object will be used to determine
     *     how the split is conducted.
     *
     * Valid options:
     * mutual - {Boolean} Split the source geometry in addition to the target
     *     geometry.  Default is false.
     * edge - {Boolean} Allow splitting when only edges intersect.  Default is
     *     true.  If false, a vertex on the source must be within the tolerance
     *     distance of the intersection to be considered a split.
     * tolerance - {Number} If a non-null value is provided, intersections
     *     within the tolerance distance of an existing vertex on the source
     *     will be assumed to occur at the vertex.
     * 
     * Returns:
     * {Array} A list of geometries (of this same type as the target) that
     *     result from splitting the target with the source geometry.  The
     *     source and target geometry will remain unmodified.  If no split
     *     results, null will be returned.  If mutual is true and a split
     *     results, return will be an array of two arrays - the first will be
     *     all geometries that result from splitting the source geometry and
     *     the second will be all geometries that result from splitting the
     *     target geometry.
     */
    splitWith: function(geometry, options) {
        return geometry.split(this, options);

    },

    /**
     * APIMethod: getVertices
     * Return a list of all points in this geometry.
     *
     * Parameters:
     * nodes - {Boolean} For lines, only return vertices that are
     *     endpoints.  If false, for lines, only vertices that are not
     *     endpoints will be returned.  If not provided, all vertices will
     *     be returned.
     *
     * Returns:
     * {Array} A list of all vertices in the geometry.
     */
    getVertices: function(nodes) {
        var vertices;
        if(nodes === true) {
            vertices = [
                this.components[0],
                this.components[this.components.length-1]
            ];
        } else if (nodes === false) {
            vertices = this.components.slice(1, this.components.length-1);
        } else {
            vertices = this.components.slice();
        }
        return vertices;
    },

    /**
     * APIMethod: distanceTo
     * Calculate the closest distance between two geometries (on the x-y plane).
     *
     * Parameters:
     * geometry - {<OpenLayers.Geometry>} The target geometry.
     * options - {Object} Optional properties for configuring the distance
     *     calculation.
     *
     * Valid options:
     * details - {Boolean} Return details from the distance calculation.
     *     Default is false.
     * edge - {Boolean} Calculate the distance from this geometry to the
     *     nearest edge of the target geometry.  Default is true.  If true,
     *     calling distanceTo from a geometry that is wholly contained within
     *     the target will result in a non-zero distance.  If false, whenever
     *     geometries intersect, calling distanceTo will return 0.  If false,
     *     details cannot be returned.
     *
     * Returns:
     * {Number | Object} The distance between this geometry and the target.
     *     If details is true, the return will be an object with distance,
     *     x0, y0, x1, and x2 properties.  The x0 and y0 properties represent
     *     the coordinates of the closest point on this geometry. The x1 and y1
     *     properties represent the coordinates of the closest point on the
     *     target geometry.
     */
    distanceTo: function(geometry, options) {
        var edge = !(options && options.edge === false);
        var details = edge && options && options.details;
        var result, best = {};
        var min = Number.POSITIVE_INFINITY;
        if(geometry instanceof OpenLayers.Geometry.Point) {
            var segs = this.getSortedSegments();
            var x = geometry.x;
            var y = geometry.y;
            var seg;
            for(var i=0, len=segs.length; i<len; ++i) {
                seg = segs[i];
                result = OpenLayers.Geometry.distanceToSegment(geometry, seg);
                if(result.distance < min) {
                    min = result.distance;
                    best = result;
                    if(min === 0) {
                        break;
                    }
                } else {
                    // if distance increases and we cross y0 to the right of x0, no need to keep looking.
                    if(seg.x2 > x && ((y > seg.y1 && y < seg.y2) || (y < seg.y1 && y > seg.y2))) {
                        break;
                    }
                }
            }
            if(details) {
                best = {
                    distance: best.distance,
                    x0: best.x, y0: best.y,
                    x1: x, y1: y
                };
            } else {
                best = best.distance;
            }
        } else if(geometry instanceof OpenLayers.Geometry.LineString) { 
            var segs0 = this.getSortedSegments();
            var segs1 = geometry.getSortedSegments();
            var seg0, seg1, intersection, x0, y0;
            var len1 = segs1.length;
            var interOptions = {point: true};
            outer: for(var i=0, len=segs0.length; i<len; ++i) {
                seg0 = segs0[i];
                x0 = seg0.x1;
                y0 = seg0.y1;
                for(var j=0; j<len1; ++j) {
                    seg1 = segs1[j];
                    intersection = OpenLayers.Geometry.segmentsIntersect(seg0, seg1, interOptions);
                    if(intersection) {
                        min = 0;
                        best = {
                            distance: 0,
                            x0: intersection.x, y0: intersection.y,
                            x1: intersection.x, y1: intersection.y
                        };
                        break outer;
                    } else {
                        result = OpenLayers.Geometry.distanceToSegment({x: x0, y: y0}, seg1);
                        if(result.distance < min) {
                            min = result.distance;
                            best = {
                                distance: min,
                                x0: x0, y0: y0,
                                x1: result.x, y1: result.y
                            };
                        }
                    }
                }
            }
            if(!details) {
                best = best.distance;
            }
            if(min !== 0) {
                // check the final vertex in this line's sorted segments
                if(seg0) {
                    result = geometry.distanceTo(
                        new OpenLayers.Geometry.Point(seg0.x2, seg0.y2),
                        options
                    );
                    var dist = details ? result.distance : result;
                    if(dist < min) {
                        if(details) {
                            best = {
                                distance: min,
                                x0: result.x1, y0: result.y1,
                                x1: result.x0, y1: result.y0
                            };
                        } else {
                            best = dist;
                        }
                    }
                }
            }
        } else {
            best = geometry.distanceTo(this, options);
            // swap since target comes from this line
            if(details) {
                best = {
                    distance: best.distance,
                    x0: best.x1, y0: best.y1,
                    x1: best.x0, y1: best.y0
                };
            }
        }
        return best;
    },
    
    /**
     * APIMethod: simplify
     * This function will return a simplified LineString.
     * Simplification is based on the Douglas-Peucker algorithm.
     *
     *
     * Parameters:
     * tolerance - {number} threshhold for simplification in map units
     *
     * Returns:
     * {OpenLayers.Geometry.LineString} the simplified LineString
     */
    simplify: function(tolerance){
        if (this && this !== null) {
            var points = this.getVertices();
            if (points.length < 3) {
                return this;
            }
    
            var compareNumbers = function(a, b){
                return (a-b);
            };
    
            /**
             * Private function doing the Douglas-Peucker reduction
             */
            var douglasPeuckerReduction = function(points, firstPoint, lastPoint, tolerance){
                var maxDistance = 0;
                var indexFarthest = 0;
    
                for (var index = firstPoint, distance; index < lastPoint; index++) {
                    distance = perpendicularDistance(points[firstPoint], points[lastPoint], points[index]);
                    if (distance > maxDistance) {
                        maxDistance = distance;
                        indexFarthest = index;
                    }
                }
    
                if (maxDistance > tolerance && indexFarthest != firstPoint) {
                    //Add the largest point that exceeds the tolerance
                    pointIndexsToKeep.push(indexFarthest);
                    douglasPeuckerReduction(points, firstPoint, indexFarthest, tolerance);
                    douglasPeuckerReduction(points, indexFarthest, lastPoint, tolerance);
                }
            };
    
            /**
             * Private function calculating the perpendicular distance
             * TODO: check whether OpenLayers.Geometry.LineString::distanceTo() is faster or slower
             */
            var perpendicularDistance = function(point1, point2, point){
                //Area = |(1/2)(x1y2 + x2y3 + x3y1 - x2y1 - x3y2 - x1y3)|   *Area of triangle
                //Base = v((x1-x2)²+(x1-x2)²)                               *Base of Triangle*
                //Area = .5*Base*H                                          *Solve for height
                //Height = Area/.5/Base
    
                var area = Math.abs(0.5 * (point1.x * point2.y + point2.x * point.y + point.x * point1.y - point2.x * point1.y - point.x * point2.y - point1.x * point.y));
                var bottom = Math.sqrt(Math.pow(point1.x - point2.x, 2) + Math.pow(point1.y - point2.y, 2));
                var height = area / bottom * 2;
    
                return height;
            };
    
            var firstPoint = 0;
            var lastPoint = points.length - 1;
            var pointIndexsToKeep = [];
    
            //Add the first and last index to the keepers
            pointIndexsToKeep.push(firstPoint);
            pointIndexsToKeep.push(lastPoint);
    
            //The first and the last point cannot be the same
            while (points[firstPoint].equals(points[lastPoint])) {
                lastPoint--;
                //Addition: the first point not equal to first point in the LineString is kept as well
                pointIndexsToKeep.push(lastPoint);
            }
    
            douglasPeuckerReduction(points, firstPoint, lastPoint, tolerance);
            var returnPoints = [];
            pointIndexsToKeep.sort(compareNumbers);
            for (var index = 0; index < pointIndexsToKeep.length; index++) {
                returnPoints.push(points[pointIndexsToKeep[index]]);
            }
            return new OpenLayers.Geometry.LineString(returnPoints);
    
        }
        else {
            return this;
        }
    },

    CLASS_NAME: "OpenLayers.Geometry.LineString"
});