LineString.js
25.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
/* Copyright (c) 2006-2011 by OpenLayers Contributors (see authors.txt for
* full list of contributors). Published under the Clear BSD license.
* See http://svn.openlayers.org/trunk/openlayers/license.txt for the
* full text of the license. */
/**
* @requires OpenLayers/Geometry/Curve.js
*/
/**
* Class: OpenLayers.Geometry.LineString
* A LineString is a Curve which, once two points have been added to it, can
* never be less than two points long.
*
* Inherits from:
* - <OpenLayers.Geometry.Curve>
*/
OpenLayers.Geometry.LineString = OpenLayers.Class(OpenLayers.Geometry.Curve, {
/**
* Constructor: OpenLayers.Geometry.LineString
* Create a new LineString geometry
*
* Parameters:
* points - {Array(<OpenLayers.Geometry.Point>)} An array of points used to
* generate the linestring
*
*/
initialize: function(points) {
OpenLayers.Geometry.Curve.prototype.initialize.apply(this, arguments);
},
/**
* APIMethod: removeComponent
* Only allows removal of a point if there are three or more points in
* the linestring. (otherwise the result would be just a single point)
*
* Parameters:
* point - {<OpenLayers.Geometry.Point>} The point to be removed
*
* Returns:
* {Boolean} The component was removed.
*/
removeComponent: function(point) {
var removed = this.components && (this.components.length > 2);
if (removed) {
OpenLayers.Geometry.Collection.prototype.removeComponent.apply(this,
arguments);
}
return removed;
},
/**
* APIMethod: intersects
* Test for instersection between two geometries. This is a cheapo
* implementation of the Bently-Ottmann algorigithm. It doesn't
* really keep track of a sweep line data structure. It is closer
* to the brute force method, except that segments are sorted and
* potential intersections are only calculated when bounding boxes
* intersect.
*
* Parameters:
* geometry - {<OpenLayers.Geometry>}
*
* Returns:
* {Boolean} The input geometry intersects this geometry.
*/
intersects: function(geometry) {
var intersect = false;
var type = geometry.CLASS_NAME;
if(type == "OpenLayers.Geometry.LineString" ||
type == "OpenLayers.Geometry.LinearRing" ||
type == "OpenLayers.Geometry.Point") {
var segs1 = this.getSortedSegments();
var segs2;
if(type == "OpenLayers.Geometry.Point") {
segs2 = [{
x1: geometry.x, y1: geometry.y,
x2: geometry.x, y2: geometry.y
}];
} else {
segs2 = geometry.getSortedSegments();
}
var seg1, seg1x1, seg1x2, seg1y1, seg1y2,
seg2, seg2y1, seg2y2;
// sweep right
outer: for(var i=0, len=segs1.length; i<len; ++i) {
seg1 = segs1[i];
seg1x1 = seg1.x1;
seg1x2 = seg1.x2;
seg1y1 = seg1.y1;
seg1y2 = seg1.y2;
inner: for(var j=0, jlen=segs2.length; j<jlen; ++j) {
seg2 = segs2[j];
if(seg2.x1 > seg1x2) {
// seg1 still left of seg2
break;
}
if(seg2.x2 < seg1x1) {
// seg2 still left of seg1
continue;
}
seg2y1 = seg2.y1;
seg2y2 = seg2.y2;
if(Math.min(seg2y1, seg2y2) > Math.max(seg1y1, seg1y2)) {
// seg2 above seg1
continue;
}
if(Math.max(seg2y1, seg2y2) < Math.min(seg1y1, seg1y2)) {
// seg2 below seg1
continue;
}
if(OpenLayers.Geometry.segmentsIntersect(seg1, seg2)) {
intersect = true;
break outer;
}
}
}
} else {
intersect = geometry.intersects(this);
}
return intersect;
},
/**
* Method: getSortedSegments
*
* Returns:
* {Array} An array of segment objects. Segment objects have properties
* x1, y1, x2, and y2. The start point is represented by x1 and y1.
* The end point is represented by x2 and y2. Start and end are
* ordered so that x1 < x2.
*/
getSortedSegments: function() {
var numSeg = this.components.length - 1;
var segments = new Array(numSeg), point1, point2;
for(var i=0; i<numSeg; ++i) {
point1 = this.components[i];
point2 = this.components[i + 1];
if(point1.x < point2.x) {
segments[i] = {
x1: point1.x,
y1: point1.y,
x2: point2.x,
y2: point2.y
};
} else {
segments[i] = {
x1: point2.x,
y1: point2.y,
x2: point1.x,
y2: point1.y
};
}
}
// more efficient to define this somewhere static
function byX1(seg1, seg2) {
return seg1.x1 - seg2.x1;
}
return segments.sort(byX1);
},
/**
* Method: splitWithSegment
* Split this geometry with the given segment.
*
* Parameters:
* seg - {Object} An object with x1, y1, x2, and y2 properties referencing
* segment endpoint coordinates.
* options - {Object} Properties of this object will be used to determine
* how the split is conducted.
*
* Valid options:
* edge - {Boolean} Allow splitting when only edges intersect. Default is
* true. If false, a vertex on the source segment must be within the
* tolerance distance of the intersection to be considered a split.
* tolerance - {Number} If a non-null value is provided, intersections
* within the tolerance distance of one of the source segment's
* endpoints will be assumed to occur at the endpoint.
*
* Returns:
* {Object} An object with *lines* and *points* properties. If the given
* segment intersects this linestring, the lines array will reference
* geometries that result from the split. The points array will contain
* all intersection points. Intersection points are sorted along the
* segment (in order from x1,y1 to x2,y2).
*/
splitWithSegment: function(seg, options) {
var edge = !(options && options.edge === false);
var tolerance = options && options.tolerance;
var lines = [];
var verts = this.getVertices();
var points = [];
var intersections = [];
var split = false;
var vert1, vert2, point;
var node, vertex, target;
var interOptions = {point: true, tolerance: tolerance};
var result = null;
for(var i=0, stop=verts.length-2; i<=stop; ++i) {
vert1 = verts[i];
points.push(vert1.clone());
vert2 = verts[i+1];
target = {x1: vert1.x, y1: vert1.y, x2: vert2.x, y2: vert2.y};
point = OpenLayers.Geometry.segmentsIntersect(
seg, target, interOptions
);
if(point instanceof OpenLayers.Geometry.Point) {
if((point.x === seg.x1 && point.y === seg.y1) ||
(point.x === seg.x2 && point.y === seg.y2) ||
point.equals(vert1) || point.equals(vert2)) {
vertex = true;
} else {
vertex = false;
}
if(vertex || edge) {
// push intersections different than the previous
if(!point.equals(intersections[intersections.length-1])) {
intersections.push(point.clone());
}
if(i === 0) {
if(point.equals(vert1)) {
continue;
}
}
if(point.equals(vert2)) {
continue;
}
split = true;
if(!point.equals(vert1)) {
points.push(point);
}
lines.push(new OpenLayers.Geometry.LineString(points));
points = [point.clone()];
}
}
}
if(split) {
points.push(vert2.clone());
lines.push(new OpenLayers.Geometry.LineString(points));
}
if(intersections.length > 0) {
// sort intersections along segment
var xDir = seg.x1 < seg.x2 ? 1 : -1;
var yDir = seg.y1 < seg.y2 ? 1 : -1;
result = {
lines: lines,
points: intersections.sort(function(p1, p2) {
return (xDir * p1.x - xDir * p2.x) || (yDir * p1.y - yDir * p2.y);
})
};
}
return result;
},
/**
* Method: split
* Use this geometry (the source) to attempt to split a target geometry.
*
* Parameters:
* target - {<OpenLayers.Geometry>} The target geometry.
* options - {Object} Properties of this object will be used to determine
* how the split is conducted.
*
* Valid options:
* mutual - {Boolean} Split the source geometry in addition to the target
* geometry. Default is false.
* edge - {Boolean} Allow splitting when only edges intersect. Default is
* true. If false, a vertex on the source must be within the tolerance
* distance of the intersection to be considered a split.
* tolerance - {Number} If a non-null value is provided, intersections
* within the tolerance distance of an existing vertex on the source
* will be assumed to occur at the vertex.
*
* Returns:
* {Array} A list of geometries (of this same type as the target) that
* result from splitting the target with the source geometry. The
* source and target geometry will remain unmodified. If no split
* results, null will be returned. If mutual is true and a split
* results, return will be an array of two arrays - the first will be
* all geometries that result from splitting the source geometry and
* the second will be all geometries that result from splitting the
* target geometry.
*/
split: function(target, options) {
var results = null;
var mutual = options && options.mutual;
var sourceSplit, targetSplit, sourceParts, targetParts;
if(target instanceof OpenLayers.Geometry.LineString) {
var verts = this.getVertices();
var vert1, vert2, seg, splits, lines, point;
var points = [];
sourceParts = [];
for(var i=0, stop=verts.length-2; i<=stop; ++i) {
vert1 = verts[i];
vert2 = verts[i+1];
seg = {
x1: vert1.x, y1: vert1.y,
x2: vert2.x, y2: vert2.y
};
targetParts = targetParts || [target];
if(mutual) {
points.push(vert1.clone());
}
for(var j=0; j<targetParts.length; ++j) {
splits = targetParts[j].splitWithSegment(seg, options);
if(splits) {
// splice in new features
lines = splits.lines;
if(lines.length > 0) {
lines.unshift(j, 1);
Array.prototype.splice.apply(targetParts, lines);
j += lines.length - 2;
}
if(mutual) {
for(var k=0, len=splits.points.length; k<len; ++k) {
point = splits.points[k];
if(!point.equals(vert1)) {
points.push(point);
sourceParts.push(new OpenLayers.Geometry.LineString(points));
if(point.equals(vert2)) {
points = [];
} else {
points = [point.clone()];
}
}
}
}
}
}
}
if(mutual && sourceParts.length > 0 && points.length > 0) {
points.push(vert2.clone());
sourceParts.push(new OpenLayers.Geometry.LineString(points));
}
} else {
results = target.splitWith(this, options);
}
if(targetParts && targetParts.length > 1) {
targetSplit = true;
} else {
targetParts = [];
}
if(sourceParts && sourceParts.length > 1) {
sourceSplit = true;
} else {
sourceParts = [];
}
if(targetSplit || sourceSplit) {
if(mutual) {
results = [sourceParts, targetParts];
} else {
results = targetParts;
}
}
return results;
},
/**
* Method: splitWith
* Split this geometry (the target) with the given geometry (the source).
*
* Parameters:
* geometry - {<OpenLayers.Geometry>} A geometry used to split this
* geometry (the source).
* options - {Object} Properties of this object will be used to determine
* how the split is conducted.
*
* Valid options:
* mutual - {Boolean} Split the source geometry in addition to the target
* geometry. Default is false.
* edge - {Boolean} Allow splitting when only edges intersect. Default is
* true. If false, a vertex on the source must be within the tolerance
* distance of the intersection to be considered a split.
* tolerance - {Number} If a non-null value is provided, intersections
* within the tolerance distance of an existing vertex on the source
* will be assumed to occur at the vertex.
*
* Returns:
* {Array} A list of geometries (of this same type as the target) that
* result from splitting the target with the source geometry. The
* source and target geometry will remain unmodified. If no split
* results, null will be returned. If mutual is true and a split
* results, return will be an array of two arrays - the first will be
* all geometries that result from splitting the source geometry and
* the second will be all geometries that result from splitting the
* target geometry.
*/
splitWith: function(geometry, options) {
return geometry.split(this, options);
},
/**
* APIMethod: getVertices
* Return a list of all points in this geometry.
*
* Parameters:
* nodes - {Boolean} For lines, only return vertices that are
* endpoints. If false, for lines, only vertices that are not
* endpoints will be returned. If not provided, all vertices will
* be returned.
*
* Returns:
* {Array} A list of all vertices in the geometry.
*/
getVertices: function(nodes) {
var vertices;
if(nodes === true) {
vertices = [
this.components[0],
this.components[this.components.length-1]
];
} else if (nodes === false) {
vertices = this.components.slice(1, this.components.length-1);
} else {
vertices = this.components.slice();
}
return vertices;
},
/**
* APIMethod: distanceTo
* Calculate the closest distance between two geometries (on the x-y plane).
*
* Parameters:
* geometry - {<OpenLayers.Geometry>} The target geometry.
* options - {Object} Optional properties for configuring the distance
* calculation.
*
* Valid options:
* details - {Boolean} Return details from the distance calculation.
* Default is false.
* edge - {Boolean} Calculate the distance from this geometry to the
* nearest edge of the target geometry. Default is true. If true,
* calling distanceTo from a geometry that is wholly contained within
* the target will result in a non-zero distance. If false, whenever
* geometries intersect, calling distanceTo will return 0. If false,
* details cannot be returned.
*
* Returns:
* {Number | Object} The distance between this geometry and the target.
* If details is true, the return will be an object with distance,
* x0, y0, x1, and x2 properties. The x0 and y0 properties represent
* the coordinates of the closest point on this geometry. The x1 and y1
* properties represent the coordinates of the closest point on the
* target geometry.
*/
distanceTo: function(geometry, options) {
var edge = !(options && options.edge === false);
var details = edge && options && options.details;
var result, best = {};
var min = Number.POSITIVE_INFINITY;
if(geometry instanceof OpenLayers.Geometry.Point) {
var segs = this.getSortedSegments();
var x = geometry.x;
var y = geometry.y;
var seg;
for(var i=0, len=segs.length; i<len; ++i) {
seg = segs[i];
result = OpenLayers.Geometry.distanceToSegment(geometry, seg);
if(result.distance < min) {
min = result.distance;
best = result;
if(min === 0) {
break;
}
} else {
// if distance increases and we cross y0 to the right of x0, no need to keep looking.
if(seg.x2 > x && ((y > seg.y1 && y < seg.y2) || (y < seg.y1 && y > seg.y2))) {
break;
}
}
}
if(details) {
best = {
distance: best.distance,
x0: best.x, y0: best.y,
x1: x, y1: y
};
} else {
best = best.distance;
}
} else if(geometry instanceof OpenLayers.Geometry.LineString) {
var segs0 = this.getSortedSegments();
var segs1 = geometry.getSortedSegments();
var seg0, seg1, intersection, x0, y0;
var len1 = segs1.length;
var interOptions = {point: true};
outer: for(var i=0, len=segs0.length; i<len; ++i) {
seg0 = segs0[i];
x0 = seg0.x1;
y0 = seg0.y1;
for(var j=0; j<len1; ++j) {
seg1 = segs1[j];
intersection = OpenLayers.Geometry.segmentsIntersect(seg0, seg1, interOptions);
if(intersection) {
min = 0;
best = {
distance: 0,
x0: intersection.x, y0: intersection.y,
x1: intersection.x, y1: intersection.y
};
break outer;
} else {
result = OpenLayers.Geometry.distanceToSegment({x: x0, y: y0}, seg1);
if(result.distance < min) {
min = result.distance;
best = {
distance: min,
x0: x0, y0: y0,
x1: result.x, y1: result.y
};
}
}
}
}
if(!details) {
best = best.distance;
}
if(min !== 0) {
// check the final vertex in this line's sorted segments
if(seg0) {
result = geometry.distanceTo(
new OpenLayers.Geometry.Point(seg0.x2, seg0.y2),
options
);
var dist = details ? result.distance : result;
if(dist < min) {
if(details) {
best = {
distance: min,
x0: result.x1, y0: result.y1,
x1: result.x0, y1: result.y0
};
} else {
best = dist;
}
}
}
}
} else {
best = geometry.distanceTo(this, options);
// swap since target comes from this line
if(details) {
best = {
distance: best.distance,
x0: best.x1, y0: best.y1,
x1: best.x0, y1: best.y0
};
}
}
return best;
},
/**
* APIMethod: simplify
* This function will return a simplified LineString.
* Simplification is based on the Douglas-Peucker algorithm.
*
*
* Parameters:
* tolerance - {number} threshhold for simplification in map units
*
* Returns:
* {OpenLayers.Geometry.LineString} the simplified LineString
*/
simplify: function(tolerance){
if (this && this !== null) {
var points = this.getVertices();
if (points.length < 3) {
return this;
}
var compareNumbers = function(a, b){
return (a-b);
};
/**
* Private function doing the Douglas-Peucker reduction
*/
var douglasPeuckerReduction = function(points, firstPoint, lastPoint, tolerance){
var maxDistance = 0;
var indexFarthest = 0;
for (var index = firstPoint, distance; index < lastPoint; index++) {
distance = perpendicularDistance(points[firstPoint], points[lastPoint], points[index]);
if (distance > maxDistance) {
maxDistance = distance;
indexFarthest = index;
}
}
if (maxDistance > tolerance && indexFarthest != firstPoint) {
//Add the largest point that exceeds the tolerance
pointIndexsToKeep.push(indexFarthest);
douglasPeuckerReduction(points, firstPoint, indexFarthest, tolerance);
douglasPeuckerReduction(points, indexFarthest, lastPoint, tolerance);
}
};
/**
* Private function calculating the perpendicular distance
* TODO: check whether OpenLayers.Geometry.LineString::distanceTo() is faster or slower
*/
var perpendicularDistance = function(point1, point2, point){
//Area = |(1/2)(x1y2 + x2y3 + x3y1 - x2y1 - x3y2 - x1y3)| *Area of triangle
//Base = v((x1-x2)²+(x1-x2)²) *Base of Triangle*
//Area = .5*Base*H *Solve for height
//Height = Area/.5/Base
var area = Math.abs(0.5 * (point1.x * point2.y + point2.x * point.y + point.x * point1.y - point2.x * point1.y - point.x * point2.y - point1.x * point.y));
var bottom = Math.sqrt(Math.pow(point1.x - point2.x, 2) + Math.pow(point1.y - point2.y, 2));
var height = area / bottom * 2;
return height;
};
var firstPoint = 0;
var lastPoint = points.length - 1;
var pointIndexsToKeep = [];
//Add the first and last index to the keepers
pointIndexsToKeep.push(firstPoint);
pointIndexsToKeep.push(lastPoint);
//The first and the last point cannot be the same
while (points[firstPoint].equals(points[lastPoint])) {
lastPoint--;
//Addition: the first point not equal to first point in the LineString is kept as well
pointIndexsToKeep.push(lastPoint);
}
douglasPeuckerReduction(points, firstPoint, lastPoint, tolerance);
var returnPoints = [];
pointIndexsToKeep.sort(compareNumbers);
for (var index = 0; index < pointIndexsToKeep.length; index++) {
returnPoints.push(points[pointIndexsToKeep[index]]);
}
return new OpenLayers.Geometry.LineString(returnPoints);
}
else {
return this;
}
},
CLASS_NAME: "OpenLayers.Geometry.LineString"
});